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classifies disease severity
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Introduction: The success of the human body in fighting SARS-CoV2 infection

relies on lymphocytes and their antigen receptors. Identifying and characterizing

clinically relevant receptors is of utmost importance.

Methods: We report here the application of a machine learning approach,

utilizing B cell receptor repertoire sequencing data from severely and mildly

infected individuals with SARS-CoV2 compared with uninfected controls.

Results: In contrast to previous studies, our approach successfully stratifies non-

infected from infected individuals, as well as disease level of severity. The features

that drive this classification are based on somatic hypermutation patterns, and

point to alterations in the somatic hypermutation process in COVID-19 patients.

Discussion: These features may be used to build and adapt therapeutic strategies

to COVID-19, in particular to quantitatively assess potential diagnostic and

therapeutic antibodies. These results constitute a proof of concept for future

epidemiological challenges.
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Background

Despite the unprecedented speed of vaccine development

against SARS-CoV2, the virus continues to undergo changes that

cause repeated waves of COVID-19 morbidity worldwide, with

increasing infectivity. Risk factors such as age ( > 60) and

preexisting medical conditions can predict to some extent

whether an individual will become severely ill or not, but the

prediction is not very accurate. The early phase of infection

results in direct tissue damage, followed by a late phase when the

infected cells trigger an immune response, by recruitment of

immune cells that release cytokines (reviewed in (1). In severe

patients, this may result in a “cytokine storm” and a systemic

inflammatory response. Many individuals do not respond well

enough to the vaccine, either because of old age or immune

impairments. Thus, there is an ongoing search for anti-viral

therapies and passive vaccines, as well as research into the basic

mechanisms related to the virus and immunity towards it.

One useful path to investigate the immunity towards SARS-

CoV2 is adaptive immune receptor repertoire sequencing (AIRR-

seq) (2–4), revealing noticeable changes in affected individuals in

many arms of the immune system (5, 6). Millions of B and T cell

receptor (BCR and TCR, respectively) sequences from hundreds of

individuals have been shared in public archives such as iReceptor

(7) and OAS (8). Thousands of individual antibody sequences

validated as targeting and neutralizing SARS-CoV2 have been

published in datasets such as CoV-AbDab (9).

In the past few years, several studies have used AIRR-seq data to

train machine learning (ML) algorithms to classify individuals who

carry diseases (10), including celiac (11, 12), hepatitis C virus

infection (13, 14), cytomegalovirus (15), and others (16). Finding

the connection between AIRR-seq data and health states is a highly

challenging task, because of the massive volume of AIRR-seq

datasets that can include tens of millions of sequences that dilute

the disease-specific biological signals. Another difficulty is our

inability to determine to which antigen(s) each receptor can bind

based solely on the receptor sequence. New methods to identify

relevant repertoire features are continuously developed (10, 17, 18).

Besides the diagnostic and prognostic potential, such features can be

critical in teaching us about the mechanisms behind the disease and

the successful immune response towards it. Thus far, the vast

majority of efforts to classify the health state or severity of

COVID-19 have relied on TCR data (19–22). Recently, for

example, a new approach to detect SARS-CoV2 infection by TCR

sequencing has been FDA approved for clinical use (21).

B cell development involves three major steps: V(D)J

recombinat ion, affinity maturat ion, and class switch

recombination. V(D)J recombination is the process by which B

cells generate a diverse array of receptors (BCRs). This process

involves a random selection and rearrangement of gene segments

called variable (V), diversity (D) and joining (J). The recombination

of these segments leads to the creation of a diverse array of receptors

that can respond to a wide range of pathogens (23, 24). B cells

undergo affinity maturation after pathogen encounter, to further
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adapt to the specific pathogen. Affinity maturation includes iterative

cycles of somatic hypermutation (SHM) and affinity dependent

selection. SHM is a mechanism by which B cells can rapidly

diversify the antigen-binding regions of their receptors. During

SHM, different enzymatic pathways orchestrate together to

introduce mutations specifically in the genomic regions encoding

the BCR (25). These mutations can result in altered affinity towards

antigens. The repeated cycles of SHM and affinity-dependent

selection lead to the generation of high-affinity B cells capable of

recognizing and responding to diverse antigens. While selection

depends on better binding, the SHM mechanism is independent of

pathogen affinity. Extensive investigations have been devoted to

understanding the SHM mechanism (26–29), but to the best of our

knowledge, no connection of a specific infection to a specific SHM

pathway or pattern was made. The mature B cell can, after

activation, undergo class switch recombination. This allows

mature B cells to switch the isotype of their heavy chain, leading

to the production of different classes of secreted BCRs (antibodies)

with different effector functions. Following V(D)J recombination,

affinity maturation, and class switching, the antigen-specific B cell

can become a memory B cell, i.e., a long-lived B cell that retains a

“memory” of previous encounters with antigens, allowing for a

quicker and more effective response upon re-exposure. It can also

become a plasmablast, which is a quickly dividing B cell that

secretes antibodies, and later on become a plasma cell, which is a

fully mature B cell that secretes large amounts of antibodies (23).

The use of BCR sequencing is considered more difficult than

TCR, because of SHM and higher diversity in the complementary

determining region 3 (CDR3). It has been reported that BCR

sequencing data cannot be used to classify individuals with

COVID-19 (22). Nevertheless, BCR data may be more

informative than TCR in some cases, as BCRs undergo affinity

maturation to adapt to each pathogen.

Here, using bulk and single cell BCR sequencing data, we

successfully classify SARS-CoV2 infected vs. naive individuals, as

well as determine disease severity. Compared with the traditional

sequence similarity clustering based approach, we obtain better

classifications by considering SHM pattern changes in SARS-CoV2

infected individuals. SHM specific patterns connected to decreased

severity, as well as important amino acid (AA) composition in

SARS-CoV2 antibodies, were identified.
Methods

Collection of samples

The repertoires composing the dataset were collected at three

medical centers. IRB approval numbers: Rabin (Beilinson) Medical

Center, 0256-20-RMC; Baruch Padeh Medical Center, 0037-20-

POR; Shaare Zedek Medical Center, 0303-20-SZMC. 28 samples of

controls were collected, as well as 39 mild patients with COVID-19

and 12 severely infected patients. Patients’ data can be found in

Table S1.
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Library preparation

Bulk: Ig repertoires were bulk sequenced according to the

method described in detail in (30). Briefly, PBMCs were purified

using Lymphoprep (Axis Shield), according to the manufacturers’

instructions. RNA was extracted using a Direct-zol RNA

miniprep kit (Zymo Research, R2050) according to the

manufacturer’s instructions. RNA was reverse-transcribed using

an oligo dT primer. An adaptor sequence was added to the 3’ end,

which contains a universal priming site and a 17-nucleotide

unique molecular identifier. Products were purified, followed by

PCR using primers targeting the different BCR isotypes and the

universal adaptor. PCR products were then purified using

AMPure XP beads. A second PCR was performed to add the

Illumina P5 adaptor to the constant region end, and a sample-

indexed P7 adaptor to the universal adaptor. Final products were

purified, quantified with a TapeStation (Agilent Genomics), and

pooled in equimolar proportions, followed by 2×300 paired-end

sequencing with a 20% PhiX spike on the Illumina MiSeq

platform according to the manufacturer’s recommendations. All

controls as well as 32 COVID-19 patients were sequenced for

both heavy and light chains. These were used as the train/

validation groups for the ML algorithms. For the rest of the

patients, only heavy chains were sequenced, and served as the test

group. 13 more controls for the test group were added from

previously published datasets. Nine controls from dataset (14),

and four from dataset (31).

Single cell
PBMCs from 13 individuals were prepared from fresh 5ml

blood samples, and frozen according to the manufacturer’s

instruction of the “Fresh Frozen Human Peripheral Blood

Mononuclear Cells for Single Cell RNA Sequencing” protocol,

document number CG00039 Rev D, 10X Genomics. Patients’ data

can be found in Table S2. We do not have information about the

SARS-CoV2 strains, as these tests were not routinely performed

at that time (January-February 2021). Patients were not

vaccinated. Libraries were prepared according to the

manufacturer’s instruction of the “Chromium Next GEM Single

Cell 5’ Reagent Kit v2 (Dual Index)” protocol, document number

CG000331 Rev A, 10X Genomics. Libraries were pooled, mixed

with 1% PhiX, and sequenced on an Illumina NovaSeq twice

using an SP and an S1 kits.
Data processing and statistics

FASTA files were generated using the PRESTO pipeline (32),

and aligned to IMGT IGHV/D/J genes (33) using the VDJbase

pipeline. Only sequences which started at the first 30 bases of the V

gene were included. Isotype frequencies, V, D, J and combinations

of V & J gene usage and CDR3 AAs 3-mers, as well as CDR3 AA

lengths and V gene identities were calculated using a custom-

designed R script (see data and code availability section). The
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same script also calculated the frequencies of BCR clusters

(sharing the same V and J genes and junction AA length).

Diversity was calculated using the alphaDiversity function from

the Alakazam R package (34). All P values were calculated using

Wilcox test and adjusted using the Benjamini-Hochberg

procedure (35).
Generating an SHM model

A 5-mer SHM model was built using the function

createTargetingModel from the shazam R package (29), once for

silent mutations only and once for both silent and replacement

mutations. To create these metrics for one representative from each

clone, we used the collapseClones function from the same package.

For each repertoire, substitutions, mutability, and targeting values

were collapsed into a single table. Tables from all repertoires were

collapsed into a single table. The tables enable both training ML

algorithms and calculating mean mutability in specific sites (WRC/

GTW and WA/TW hot-spots, the SYC/GRS cold-spot and all other

sites). The table was also used to calculate single base mean

mutability levels in all repertoires. The single base mutability was

calculated as the average of all 5-mers with the same base in

the middle.
Training and estimation of ML algorithms

50 random splits to train and validation groups were made in

order to estimate the F1 score, accuracy, sensitivity, and specificity

of each model. Lasso and Elastic-Net Regularized Generalized

Linear Models (GLMNET) using the caret R package (36) were

trained on tables containing data from the repertoires. Feature

selection was done using t-test calculations between frequencies in

the different groups in the train subset only. Only features with P

value below a certain threshold were selected. The algorithm was

then trained on the selected data, and classifications were made for

the validation groups. F1 score, accuracy, sensitivity, and specificity

were calculated for each random split.
COVID-19 classification using AA
frequencies at all V gene positions

Frequencies of each AA along 103 positions (according to the

IMGT numbering) in each V gene family were calculated for all

repertoires. The train/validation samples were used to train the

same algorithm as explained above, and to estimate the F1 score,

accuracy, sensitivity, and specificity of the algorithm. The validation

group was used to estimate the parameters of the algorithm on

unseen data. Coefficients of the algorithm were extracted and

enabled to calculate scores for single antibodies. If a certain AA

was present in the sequence, it received a frequency of 1. Otherwise,

it received a frequency of 0. This equation was used to calculate
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scores for all antibodies in all repertoires, as well as scores for

known COVID-19 antibodies from the CoV-AbDab database.
Single cell data analysis

Single cell data was analyzed using cell-ranger 6.0.1 with output

of both VDJ recombination and gene expression data. Cell-ranger

output was then manipulated using the Seurat R package (37). Cells

with more than 5% mitochondrial gene expression were removed.

Data was normalized, and PCA and UMAP on the top 10 PCAs

were done using standard Seurat functions. Cell identity was

determined using the SingleR R package against a sorted dataset

from the celldex R package (38). Barcodes of VDJ data and gene

expression data were matched using R.
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Results

BCR gene usage cannot classify SARS-
CoV2 infection

To assess changes in BCR repertoires of COVID-19 patients, we

collected 79 blood samples and sequenced their BCR repertoires.

Samples were split to three groups: uninfected individuals, mildly and

severely COVID-19 infected patients. For each group we characterized

several whole repertoire features, such as CDR3 AA length distribution,

V gene mutation distribution, clonal diversity, V, D, J and combination

of V and J gene usage. We also calculated frequencies of BCR clusters

(same V and J gene as well as same CDR3 AA length). These

measurements are shown in Figure 1 and in Figure S1 for heavy

chains, and for kappa and lambda light chains in Figures S2 and S3.
A B

D

E F

C

FIGURE 1

Characterization of the COVID-19 heavy chain BCR cohort. (A) 10,50 and 90 percentiles of AA CDR3 length in individuals with corona at indicated
severity and controls. (B) 10,50 and 90 percentiles of V gene distances from germline in COVID-19 infected individuals at indicated severity and
controls. (C) Boxplot showing calculated Hill diversity indexes upon different q values between individuals infected by COVID-19 at indicated severity
and controls. (D) Boxplots showing V gene usage in individuals infected by COVID-19 at indicated severity and controls, shown top 50’s mean
frequencies. (E) Boxplots showing the isotype frequencies in individuals infected by COVID-19 at indicated severity and controls. (F) Boxplots
showing silent mutations’ frequencies along the V gene in different isotypes of individuals infected by COVID-19 at indicated severity and controls. In
the whole figure, * marks P value less than 0.05. ** marks P value less than 0.01 and *** marks P value less than 0.001.
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As expected, the diversity of BCR clones is significantly lower in

COVID-19 patients compared with controls (Figure 1C). No

significant difference was observed in CDR3 AA length (Figure 1A),

and only slight increase was seen inV gene mutation distribution

(Figure 1B). For many V genes we observed significantly reduced

usage in COVID-19 patients (Figure 1D). Three exceptions are IGHV4-

34, IGHV4-39 and IGHV4-59 that demonstrate increased usage upon

infection, which is further increased in severe patients compared with

mild ones. These results support previously published COVID-19 data

(39, 40), and suggest that antibodies against SARS-CoV2 mainly

comprise those genes. To further validate these conclusions, we tried

to build ML classifiers based on V, V & J gene usage, or V & J gene

usage and 85% similarity in the CDR3 AAs. However, these models

yielded less than 70% accuracy, suggesting low impact of V or V & J

gene usage on the response to SARS-CoV2 infection.

We explored further whole repertoire features, and compared

isotype frequencies between the different groups. While we

observed a reduction in the frequencies of IGD and IGM upon

SARS-CoV2 infection, the levels of IGG increased (Figure 1E), and

those of IGA remained unchanged. We also measured silent

mutability frequencies for each isotype (Figure 1F). These

measurements avoid changes which are caused by antibodies

selective pressure. In contrast to the IGG and IGA class switched

isotypes, in which mutability upon infection is reduced, in IGD and

IGM mutability is increased. In severe patients, the IGD and IGM

mutability was even higher (Figure 1F).
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BCR V gene AA composition successfully
classifies SARS-CoV2 infection and may
reveal important features of antibodies
against the virus

We continued exploring classification approaches to stratify

COVID-19 patients and uninfected individuals. To this end, we

explored AA frequencies along the V gene, aggregated by V gene

family. We generated a table with 10,300 columns, counting AA

frequencies along 103 V gene positions (aligned according to IMGT

numbering), for the 5 most highly used V gene families (IGHV1-5).

Using this approach we obtained a high F1 score of more than 0.85,

and similar levels of accuracy, sensitivity, and specificity

(Figure 2A). The test set resulted in an F1 score of above 0.85

(Figure 2B). We then extracted the coefficient used by the algorithm,

corresponding to the contribution of each AA frequency to the

classification of the disease (Figure 2D).
To further validate that these changes are unique to COVID-19

patients, we downloaded a dataset of more than 450 repertoires

from cAb-rep data collection (41). These data include repertoire

sequencing results from a wide variety of clinical conditions such as

Hepatitis B virus infection, vaccinations against Hepatitis B virus

and influenza, and several autoimmune diseases. Applying our

algorithm to these data to classify COVID-19 infection resulted in

a false positive rate of only 6%, indicating that our classification is

specific to COVID-19 infection.
A B

D

C

FIGURE 2

COVID-19 classification using AA frequencies at all V gene positions. (A) Boxplots showing the F1 score, accuracy, sensitivity, and specificity for
COVID-19 classification by AA frequency at each position in each V family. Shown are values calculated for 50 random splits to train and validation
groups. (B) Bar plots showing the indicated scores on the external test group. (C) COVID-19 single antibody scores were calculated using the
coefficients of the algorithm described in panel (A) Boxplos showing the fraction of antibody sequences with scores above 0 in control and COVID-
19 infected repertoires, as well as in CoV-AbDab COVID-19 antibodies, are shown. (D) Log10 coefficients of the algorithm described in (A, B).
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These results were obtained for the repertoire level, and we

sought to test their applicability to the single BCR sequence level.

For this, we transferred the features selected for the repertoire level

model, i.e., AA frequencies along the V gene families, to calculate a

score for single BCR sequences. We calculated such scores for a list

of more than 5,000 known antibodies against SARS-CoV2 from the

CoV-AbDab database (9). The scores of the known antibodies were

higher than those came from whole repertoires of control patients

as well as most of the COVID-19 infected repertoires (Figure 2C),

suggesting that these coefficients are meaningful not only for the

repertoire level, but also for single BCR sequences. Our attempts to

classify the severity of COVID-19 using this method were not
Frontiers in Immunology 06
successful, so for this purpose, we explored other sets of features.

The coefficients of the algorithm can be seen in Figure 2D.
Mutation bias in class-switched B cells of
COVID-19 patients

As reduced levels of overall BCR mutability were seen upon

SARS-CoV2 infection only in the class switched isotypes

(Figure 1F), we quantified single base mutability patterns in these

isotypes. As seen in Figure 3A, the mean relative mutability is

reduced in COVID-19 patients at Cytosine and Guanine (C and G),
A B

D

E F

C

FIGURE 3

Silent and replacement mutability in SHM single base mutability, 5-mers hot-spots and cold-spots. (A) A single base mutability model was built based
on IGA/G isotypes of COVID-19 patients and controls. Shown are boxplots representing the normalized sum of single base mutability. (B) The same
plot as in A but for silent mutations only. (C, D) An 5-mer SHM model based on both silent and replacement mutations in (C), or silent only
mutations in (D), was built using the IGD and IGM isotypes of COVID-19 patients at different severity levels and controls. Shown mutability of the
two known SHM hot-spots, SHM cold-spots, and the rest of the sites. (E, F) An 5-mer SHM model based on both silent and replacement mutations
in (E), or silent only mutations in (F), was built using the IGA and IGG isotypes of COVID-19 patients at different severity levels and controls. Shown
mutability of the two known SHM hot-spots, SHM cold-spots, and the rest of the sites. In the whole figure, * marks P value less than 0.05. ** marks
P value less than 0.01 and *** marks P value less than 0.001.
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but increases in Adenine and Thymine (A and T). The same results

were obtained when considering silent mutations only (Figure 3B).

Five main pathways are responsible for introducing mutations

during SHM (12). Three introduce mutations in C and G, and

the other two involve the low fidelity DNA polymerase pol h, which
mutates A and T. The significant differences in mutability observed

in COVID-19 patients suggest altered activity of those arms. To

further investigate SHM in SARS-CoV2 infection, we applied a

commonly used 5-mers SHMmutability model (26). In general, two

highly mutated hot-spot motifs are commonly observed in SHM.

One is WRC/GYW (where W = {A, T}, Y = {C, T} R = {G, A}, and

the mutated position is underlined), and the other is WA/TW. In

addition, SYC/GRS (where S = {C, G}), is considered as a cold-spot

sequence motif. We first built a 5-mer mutability model based on

both silent and replacement mutations. Such a model combines the

effects of SHM and antigen-driven selection. We divided the 5-mers

to those occurring in the two hot-spots, in the cold-spot, and in all

other neutral sites, and show their levels for IGD/IGM and for IGA/

IGG (Figures 3C, E). The most significant changes between the

different groups are a decrease in the WRC/GYW site and an

increase in SYC/GRS in IGA/IGG of COVID-19 patients. This

increase is not seen in severely infected patients.

To understand whether these patterns stem from SHM or from

antigen-driven selection, we built another model, taking only silent

mutations into consideration. Figures 3D, F shows the resulting

mutability scores for the same sequence motifs. The observed

pattern resembles the one observed in Figures 3C, E, suggesting

that the alteration between the groups results from altered SHM

characteristics. To avoid the effect of clonal expansion on mutability

calculations, we repeated all calculations, taking into account only

one representative from each clone. Similar results were obtained

using this approach (Figure S4). Moreover, using SHM matrices

based only on a specific V family resulted in a much lower signal
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(Figure S5F). Importantly, the mentioned SHM patterns reflect the

relative likelihood for each mutation pattern and do not indicate the

overall mutability level.
Silent SHM patterns classify SARS-CoV2
infection and severity

To estimate the level of connection between changes in SHM

patterns and SARS-CoV2 infection, we tried again to build a

classifier of samples’ origin. We built two models, one using all

mutations (Figures 4A, S5, S6A, S8), and one using silent mutations

only (Figures 4B, S6B). Taking all mutations into account, we

obtained an F1 score of over 0.85, as well as accuracy, sensitivity,

and specificity values. Taking only silent mutations into account, we

obtained a slightly lower result of ∼0.8 F1 score and accuracy.

These results strengthen our hypothesis that the differences between

the repertoires emerge mainly from SHM itself and not from

antigen-driven selection. Using only light chain sequences for the

mutability model reaches much lower results, as expected (Figure

S7A, B). A model based on the combination of light and heavy

chains does not obtain better results than using the heavy chain only

(Figure S8).

Next, we tried to classify COVID-19 severity using SHM

patterns. Since the mutability in the cold-spot motif changes the

most between severe and mild patients, we built a model using

mutability scores of this cold-spot only. We obtained an F1 score

and accuracy of about 0.75 in severity classifications (Figure 4C).

All patterns with non-zero coefficients have much higher

mutability frequencies in mild patients compared with severe

patients (Figure 4D). Again, to avoid the effect of clonal

expansion and selective pressure on the inferred mutability

model, we repeated the mutability model inference taking into
A B DC

FIGURE 4

SHM Heavy chain enables classification of both SARS-CoV2 infection and COVID-19 severity. (A) An ML algorithm was trained on the substitutions
matrix of the 5-mer SHM model, which was created for the IGA/G isotypes. Boxplots representing F1 score, accuracy, specificity, and sensitivity of
50 random splits to train and test groups are shown. (B) The same algorithm as in A was trained on silent mutations only. Shown are Boxplots
representing the F1 score, accuracy, specificity, and sensitivity of 50 random splits to train and test groups. (C) Boxplots showing F1 score, accuracy,
specificity, and sensitivity of 20 leave-one-out cross validation of severity classification. Each leave-one-out was on 12 severe COVID-19 patients
and 12 randomly selected mild COVID-19 patients. The ML algorithm was trained on the mutability matrix of the SHM cold-spots in these groups.
(D) Frequency of mutability in mild and severe individuals with COVID-19. Boxplots of frequencies of repeating coefficients of the algorithm
explained in (C) are shown.
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account only one representative from each clone. As shown in

Figure S5, the results were comparable to those obtained using

all sequences.
Known SARS-CoV2 antibodies are enriched
in plasmablasts from COVID-19 patients

We thought to find in our sequencing data, antibodies that may

be related to the known COVID-19 antibodies. As mentioned

above, during the COVID-19 pandemic a new database

summarizing all known SARS-CoV2 antibodies was published,

containing more than 5,000 antibody AA sequences of both

heavy and light chains. For each of our repertoires, we calculated

and summarized the frequencies of sequences that are similar to

known antibodies. We defined similar antibodies by 85% identity in

the CDR3 AAs, and the same V and J genes. As expected, the

frequencies of similar to known antibodies in COVID-19 patients

were higher than those in control individuals (Figure 5A.

Histograms summarizing the sizes and numbers of samples

having at least one representation in the clones can be found in
Frontiers in Immunology 08
Figures S9A, B). Using the sum of frequencies of similar to known

COVID-19 clones, we reached an accuracy of above 70% in

repertoire classification and an AUC of 0:81 (Figure 5B). Even

lower results were obtained when training the algorithm to count

the frequencies of shared clones between samples (Figure S10).

Although significant, this result is lower than that achieved by

considering mutations along the V gene.

To further explore the similarity to known antibodies, we

performed 10X Genomics single cell sequencing including V(D)J

and gene expression, on blood samples from additional 13 mild

COVID-19 patients. Using single cell sequencing data enables

matching of heavy and light chains, which cannot be done with

bulk sequencing. Moreover, single cell sequencing provides the

ability to identify cell type using gene expression signatures. We

found similar to known antibodies in 7 out of the 13 repertoires.

The frequencies were overall lower compared with those seen in the

bulk RNA sequencing cohort (Figure 5C). This could be due to the

differences in sequencing methods, or because in the single cell

cohort the patients were diagnosed on average more recently than

the bulk cohort and thus may have had lower levels of SARS-CoV2

specific antibodies.
A B

D E

C

FIGURE 5

Clones of antibodies in our sequencing close to known COVID-19 antibodies from CoV-AbDab database. (A) Sum of frequencies of clones (same V
and J genes and 85% similarity in AA of CDR3) close to known COVID-19 antibodies (from CoV-AbDab data base) in COVID-19 patients and controls.
(B) ROC curve summarizing the results shown in (A). (C) Sum frequencies of clones close to COVID-19 antibodies in 13 single cell COVID-19 patients
data. (D) UMAP on gene expressions of B cells isolated from 13 patients showing differences between naive, memory and plasmablast cells. Cell type
identification was done using SinglR. (E) Sum of frequencies of antibodies close to known COVID-19 antibodies in bulk sequencing of COVID-19
patients and control as well as in sequences from single cell sequences of COVID-19 patients and in cells identified as plasmablast cells.
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We then applied the SingleR R package to classify cell types by

single cell expression profiles. Two-dimensional UMAP reduced

plots are shown in Figure 5D, demonstrating a distinct cluster of

plasmablasts. We summarized the frequency of known SARS-CoV2

clusters in bulk sequenced COVID-19 patients, bulk controls, single

cell unsorted data, and single cell plasmablasts only. As shown in

Figure 5E, COVID-19 patients show enriched levels of similarity to

known SARS-CoV2 antibody compared with controls. Single cells

show higher levels than controls but lower than bulk, as discussed

above. Among plasmablasts of COVID-19 patients, we see the

highest frequency of known antibody clusters, indicating a

stereotypical response to SARS-CoV2. Lastly, to validate our

observation that WRC/GYW hot-spots mutability scores decrease

upon COVID-19 infection, and SYC/GRS cold-spots increase

(Figure 3), we split the single cell data into plasmablasts vs. all

other B cell types. We built a mutability SHM matrix for each of

these subsets, and indeed found a reduction in the mutability scores

of WRC/GYW hot-spots in plasmablasts (0.00168) compared with

the other B cell types (0.00178), and an increase in the mutability

scores of the SYC/GRS cold-spots (0.0003 and 0.0002, respectively).
Discussion

The COVID-19 pandemic, caused by evolving variants of

SARS-CoV2, has infected a large proportion of the population

worldwide. Antibodies play a critical role in eliminating the virus

from the body. Serological tests are routinely used to estimate

immunity of individuals against SARS-CoV2, convalescent

plasma donations were used to treat severely ill COVID-19

patients, and many monoclonal antibodies were developed as

candidate passive vaccinations.

Although the pandemic has caused a huge health and economic

burden, it brought several important advantages for biomedical

research. With so many researchers and funding opportunities

focusing on a single topic, the pandemic facilitated both broad

and profound analyses of the virus and the immune responses

towards it. During the past two and a half years, thousands of

COVID-19 binding/neutralizing antibodies have been published

and deposited in public datasets (42, 43). This huge amount of data

facilitates finding BCR sequences that are similar to known

antibody sequences, and searching for common features. Such

features may be used in the clinic for diagnosis of the disease, but

in the case of COVID-19 there are easier, faster and cheaper ways to

do that. Much more importantly, it can teach us about the

development of the immune response towards the virus.

In this study we collected and sequenced the BCR repertoires of

51 SARS-CoV2 infected individuals as well as 28 control ones. We

do not have information about the SARS-CoV2 strains in which

patients were infected by, but they are almost certain to be the

original strain (before Alpha (B.1.1.7)). All samples were collected

between April and early November 2020, and the earliest

documented variant strains, as well as the earliest vaccines,

arrived in Israel in late December 2020. Here, in contrast to

previous reports (22), we were able to stratify COVID-19 patients

and healthy individuals based on shared clusters of BCR sequences.
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The moderate classification results of such approach led us to

explore different sets of features that turned out to be more

informative. AA frequencies at all V gene positions served as a

basis for an ML model that produced a high F1 score ( ∼ 85%) in

classifying COVID-19 infection.

The patterns of AA alterations in BCRs arise during the process

of affinity maturation, that includes two iterative processes, namely

SHM and affinity-dependent selection. These patterns can stem

from the antibodies against SARS-CoV2 or from overall altered

SHM mechanism in COVID-19 patients.

An important question that may arise when inspecting the

presented approach is whether it is specific to COVID-19, or

perhaps it simply detects general signals related to an adaptive

immune response towards a new pathogen. We believe that the

presented approach is specific to COVID-19 because: 1. The signal

does not disappear when choosing a single representative per clone,

which eliminates the effect of general clonal expansion. 2. The signal

is based on an SHM pattern, which is subject to an antigen-specific

affinity maturation. 3. Our lab has a lot of experience in ML-based

classification of different clinical conditions (12, 14, 18), and for

each condition the features identified by the algorithm as the most

essential for classification were different. SHM patterns have never

been previously identified as a feature, as far as we know. To test

this, we applied our algorithm to data from ∼450 samples,

including infection with Hepatitis B virus, vaccinations against

Hepatitis B virus and influenza, and several autoimmune diseases.

94% of these repertoires were classified as healthy, indicating that

our algorithm does not classify any neo-response as COVID-19.

Extensive research has been devoted to study SHMmechanisms

affecting other regions in the antibody besides the CDR3 (29, 44).

Yet, except a recent publication about Crohn’s disease (45), this

knowledge has not been used for disease classifications, nor for

improving antibody engineering. We sought to follow the SHM

machinery during SARS-CoV2 infection, starting with the whole

repertoire level. It is well established that antibodies bindingSARS-

CoV2 are very close to the germline (6, 46–48). Surprisingly, even at

the repertoire level, we detected a decrease in mutability of IGG

BCRs. To explore whether the AA frequency-based signal results

from alterations in SHM or affinity dependent selection, we

followed the mutability rates of silent mutations only. These

mutations are not subjected to affinity dependent selection

pressure, thus reflecting changes in the machinery of SHM. We

found that most SHM changes upon SARS-CoV2 infection were

observed even when counting only silent mutations, which are not

subject to affinity selection, suggesting dramatic changes in the

SHM machinery upon SARS-CoV2 infection. To further pinpoint

the effects on the SHM machinery, we repeated the calculations

taking only one representative from each clone into account,

thereby abolishing the effect of clonal expansion (Figure S5). This

step slightly reduced the F1 score, in a non-significant way. The fact

that eliminating the effect of clonal expansion on our findings did

not abolish the differences suggests that there are true changes in the

SHM machinery. Moreover, the moderate performance reduction

when taking only one representative per clone, hints that the SHM

changes during SARS-CoV2 infection may be further enhanced by

clonal expansion, potentially aiding the battle with the virus.
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Many pathways are involved in the introduction of mutations to

BCR sequences. In particular, two common SHM hot-spots, WRC/

GYW and WA/TW, are affected by two different pathways. While

mutations in WRC/GYW motifs are mediated by the activation

induced deaminase, mutability at WA/TW motifs also involve the

low fidelity DNA polymerase pol h.
In the class switched IGA and IGG isotypes, we observed

decreased mutability levels with increasing severity of COVID-19

at WRC/GYW motifs, and increased mutability at WA/TW sites.

Again, these changes were observed even when counting silent

mutations only, further supporting an impact of the virus on the

SHM introduction mechanism. The reduced mutability in WRC/

GYW motifs and the mildly increased mutability in WA/neTW

motifs may hint that AID levels could be decreased upon COVID-

19 infection. This possibility will need to be validated in future

studies. Another future direction is to test for possible SHM

positional effects. The presence of such an effect was lately

suggested (49), and it will be very interesting to inspect whether

this is relevant to our results.

Another specific SHM target is the cold-spot SYC/GRS.

Surprisingly, we found an increase in mutability rates of this

cold-spot in COVID-19 repertoires. Moreover, this increase was

not observed in severely infected patients, suggesting that this

mechanism may be critical for production of efficient antibodies

and thereby for prevention of severe illness.

Building on our success in classifying patients from healthy

individuals, we sought to develop an ML-based algorithm to classify

disease severity. This could have important clinical outcomes, since

medications and passive vaccines now exist that can prevent

deterioration if diagnosed individuals are treated rapidly.

However, these treatments have side effects and are not given to

the wide population. Prediction of disease severity by the known

risk factors is highly inaccurate, and there are currently no other

means to classify severity. Using mutability patterns from silent

mutations only, we estimate our ability to classify COVID-19

severity at approximately 75% (Figure 4C). The known risk

factors to develop severe COVID-19 are mostly preexisting

conditions such as older age, hypertension, obesity, diabetes.

Here, we suggest another risk biomarker that involves basic

features of the adaptive immune system. Many more steps are

needed to enable prediction of COVID-19 infection and severity

based on BCR sequencing data. We provide here a first step

towards it.

AA frequency patterns along the V genes at the whole repertoire

level is a sufficient feature for relatively good classification of

COVID-19. Looking at the identity of AA along the V gene of a

single BCR sequence may reveal its affinity towards the virus. To

explore the connection between the new BCR repertoire data

generated here and known SARS-CoV2 antibody sequences we

took a two way approach. Building on the hypothesis that the whole

repertoire level signal responsible for the classification stems from

individual SARS-CoV2-specific antibodies generated during the

infection, we derived a single sequence score based on the

repertoire classification signal. Although sequences with high

scores are scarce in both healthy and COVID-19 repertoires, their
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prevalence in the CoV-abDab data is significantly higher

(Figure 2C). As such, the features (detailed in Figure 2D) may be

used for more rational antibody design towards the virus. In

addition, we explored the presence of similar sequences to the

validated CoV-abDab antibodies in both bulk and in single cell

sequenced repertoires. We found a higher fraction of sequences

with high similarity to known antibodies in COVID-19 patients

compared with controls. This can also be used for successful

classification of the repertoires. Notably, a group of COVID-19

patients had no similar antibodies to those in the list, suggesting

that despite the massive efforts so far, the list is incomplete. On the

other hand, in some control samples we found few sequences

similar to known antibodies. These antibodies may provide a

basis for protection from COVID-19 symptoms or complications

to individuals who carry them.
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