1,541 research outputs found

    Development of Heterogeneous Photosensitized Transition Metal Oxide Water-Splitting Catalysts on Silica Support

    Get PDF
    The research presented in this manuscript describes the development of photosensitized inexpensive catalysts based on readily available materials. The investigation covers synthesis and characterization of photosensitizers based on porphyrins, mechanical and thermal coating of solid support with semiconducting transition metal oxides, photosensitization of the semiconducting layer, and characterization of the photoelectrochemical properties displayed by the new materials. The process of water oxidation is of primary interest here, with little emphasis put on reduction of protons to gaseous hydrogen. Photoelectrochemically produced protons serve as a probe of effectiveness of the catalysts. Several systems are described, and two catalysts are identified as the most efficient

    Composition and dynamics of high power impulse magnetron discharge at W-Mo-C target in argon atmosphere

    Get PDF
    Metal-doped diamond-like carbon (Me-DLC) is a typical industrial solution for wear resistant coating due to their tribological properties. DLC doping with metal is used to reduce internal stress of the DLC coating, improve its thermal stability, hardness, coating-substrate adhesion, and wear resistance. Furthermore, application of the High Power Impulse Magnetron Sputtering (HiPIMS) for Me-DLC deposition allows improvement of coating adhesion and densification of the coating. To improve the properties of the DLC coatings doping with tungsten and molybdenum from a mixed W-Mo-C target can be used. This study concerns the plasma chemistry and composition for a W-Mo-C target operated with HIPIMS in argon atmosphere. For a HIPIMS discharge with a fixed pulse length of 150 μs a linear dependence of the average power and current are observed. The optical emission spectroscopy experiments reveal a temporal dependence of the plasma composition as the current pulse develops. First plasma is dominated by argon neutrals and ions followed by molybdenum and tungsten. Significant separation between the two metal species is observed in terms of the times of onset and peak of the emission. As a consequence of the change of the neutral gas to metal ratio the estimated effective electron temperature, Te, changes from ~2 eV as estimated from Ar I emission to ~0.3-0.6 eV as indicated by W I emission. A change of Te is also observed with the change of HIPIMS frequency: the Te estimated from metal excitations increases most probably as a result of the processes taking place in the afterglow phase between HIPIMS pulses. The transition from argon plasma at the beginning of the pulse to metal-rich plasma in the second phase of the pulse is discussed in comparison with the ion current measurements performed with a planar probe

    Longtime behavior of nonlocal Cahn-Hilliard equations

    Full text link
    Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well

    Evidence for a common physical description of non-Fermi-liquid behavior in f-electron systems

    Full text link
    The non-Fermi-liquid (NFL) behavior observed in the low temperature specific heat C(T)C(T) and magnetic susceptibility χ(T)\chi(T) of f-electron systems is analyzed within the context of a recently developed theory based on Griffiths singularities. Measurements of C(T)C(T) and χ(T)\chi(T) in the systems Th1xUxPd2Al3Th_{1-x}U_{x}Pd_{2}Al_{3}, Y1xUxPd3Y_{1-x}U_{x}Pd_3, and UCu5xMxUCu_{5-x}M_{x} (M = Pd, Pt) are found to be consistent with C(T)/Tχ(T)T1+λC(T)/T \propto \chi(T) \propto T^{-1+\lambda} predicted by this model with λ<1\lambda <1 in the NFL regime. These results suggest that the NFL properties observed in a wide variety of f-electron systems can be described within the context of a common physical picture.Comment: 4 pages, 4 figure

    Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems

    Get PDF
    On bounded three-dimensional domains, we consider divergence-type operators including mixed homogeneous Dirichlet and Neumann boundary conditions and discontinuous coefficient functions. We develop a geometric framework in which it is possible to prove that the operator provides an isomorphism of suitable function spaces. In particular, in these spaces, the gradient of solutions turns out to be integrable with exponent larger than the space dimension three. Relevant examples from real-world applications are provided in great detail

    Nonlinear Magneto-Optical Response of ss- and dd-Wave Superconductors

    Full text link
    The nonlinear magneto-optical response of ss- and dd-wave superconductors is discussed. We carry out the symmetry analysis of the nonlinear magneto-optical susceptibility in the superconducting state. Due to the surface sensitivity of the nonlinear optical response for systems with bulk inversion symmetry, we perform a group theoretical classification of the superconducting order parameter close to a surface. For the first time, the mixing of singlet and triplet pairing states induced by spin-orbit coupling is systematically taken into account. We show that the interference of singlet and triplet pairing states leads to an observable contribution of the nonlinear magneto-optical Kerr effect. This effect is not only sensitive to the anisotropy of the gap function but also to the symmetry itself. In view of the current discussion of the order parameter symmetry of High-Tc_c superconductors, results for a tetragonal system with bulk singlet pairing for various pairing symmetries are discussed.Comment: 21 pages (REVTeX) with 8 figures (Postscript

    CF2 Represses Actin 88F Gene Expression and Maintains Filament Balance during Indirect Flight Muscle Development in Drosophila

    Get PDF
    The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size

    Plasma Dynamics

    Get PDF
    Contains reports on three research projects.United States Atomic Energy Commission (Contract AT(30-1)-1842)United States Air Force, Air Force Cambridge Research Center (Contract AF19(604)-5992)United States Air Force, Air Force Cambridge Research Center (Contract AF19(604)-4551)National Science Foundation (Grant G-9930)Office of Naval Research through Project SQUID, Phase III, under contract with Massachusetts Institute of Technolog

    On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities

    Get PDF
    We study a non-local variant of a diffuse interface model proposed by Hawkins--Darrud et al. (2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn--Hilliard equation coupled to a reaction-diffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which are the non-local analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015). Furthermore, we establish existence of weak solutions for the case of degenerate mobilities and singular potentials, which serves to confine the order parameter to its physically relevant interval. Due to the non-local nature of the equations, under additional assumptions continuous dependence on initial data can also be shown.Comment: 28 page
    corecore