69 research outputs found

    Characterization of the First Conotoxin from Conus ateralbus, a Vermivorous Cone Snail from the Cabo Verde Archipelago

    Get PDF
    Conus ateralbus is a cone snail endemic to the west side of the island of Sal, in the Cabo Verde Archipelago off West Africa. We describe the isolation and characterization of the first bioactive peptide from the venom of this species. This 30AA venom peptide is named conotoxin AtVIA (δ-conotoxin-like). An excitatory activity was manifested by the peptide on a majority of mouse lumbar dorsal root ganglion neurons. An analog of AtVIA with conservative changes on three amino acid residues at the C-terminal region was synthesized and this analog produced an identical effect on the mouse neurons. AtVIA has homology with δ-conotoxins from other worm-hunters, which include conserved sequence elements that are shared with δ-conotoxins from fish-hunting Conus. In contrast, there is no comparable sequence similarity with δ-conotoxins from the venoms of molluscivorous Conus species. A rationale for the potential presence of δ-conotoxins, that are potent in vertebrate systems in two different lineages of worm-hunting cone snails, is discussed.This work was supported by grants to BMO from the National Institute of General Medical Science, GM 48677 and GM103362. Partial funding was obtained through a PhD grant to JLBN (SFRH/BD/51477/2011) from the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Program and from national funds through FCT—Foundation for Science and Technology—under the project FCT Project UID/Multi/04423/ and by the project H2020 RISE project EMERTOX—Emergent Marine Toxins in the North Atlantic and Mediterranean: New Approaches to Assess their Occurrence and Future Scenarios in the Framework of Global Environmental Changes—Grant Agreement No. 778069. The sample collection in Cabo Verde was supported by Fundação Calouste Gulbenkian

    Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    Get PDF
    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABA(B) receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABA(B) receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain

    Single-Step Grafting of Aminooxy-Peptides to Hyaluronan: A Simple Approach to Multifunctional Therapeutics for Experimental Autoimmune Encephalomyelitis

    Get PDF
    The immune response to antigens is directed in part by the presence or absence of costimulatory signals. The ability to coincidently present both antigen and, for example, a peptide that inhibits or activates the costimulatory pathway, would be a valuable tool for tolerization or immunization, respectively. A simple reaction scheme utilizing oxime chemistry was identified as a means to efficiently conjugate different peptide species to hyaluronan. Peptides synthesized with an aminooxy N-terminus reacted directly to hyaluronan under slightly acidic aqueous conditions without the need for a catalyst. The resulting oxime bond was found to rapidly hydrolyze at pH 2 releasing peptide, but was stable at higher pH values (5.5 and 7). Two different peptide species, a multiple sclerosis antigen (PLP) and an ICAM-1 ligand (LABL) known to block immune cell stimulation, were functionalized with the aminooxy end group. These peptides showed similar reactivity to hyaluronan and were conjugated in an equimolar ratio. The resulting hyaluronan with grafted PLP and LABL significantly inhibited disease in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Aminooxy-peptides facilitate simple synthesis of multifunctional hyaluronan graft polymers, thus enabling novel approaches to antigen-specific immune modulation

    A comparative meta-analysis of gains in efficiency in Pb- and Sn- based perovskite solar cells over the last decade

    No full text
    Perovskite solar cells have seen rapid development over the last decade due to their potential to surpass current market-leading solar cell technologies. Power conversion efficiency values of perovskite solar cells have reached more than 25 %, making them comparable to their market-leading silicon-based counterparts with comparatively few years of development. Whilst large-scale trials are ongoing, the long-term stability of perovskite materials remains a significant challenge in their deployment. The first successful perovskite-based solar cells were lead-based (Pb-based). Environmental concerns surrounding Pb-based perovskites are a significant impediment to their application in industry leading to a substantial increase in research into alternatives that are more environmentally sound. The meta-analysis study presented in this paper intends to harvest efficiency and synthetic method data from the literature to chart the progress of efficiency over the last decade of BOTH Pb- and Sn-based perovskite solar cells. We then use these data to test the hypothesis: “Did the advancements in the development of earlier Pb-based perovskite solar cells mean the efficiency of Sn-based alternatives developed at a faster rate?” The meta-analysis found that materials engineering, i. e., identifying the suitable materials for perovskite, electron and transport layers and the solution and fabrication process contributed significantly to the rapid annual efficiency growth rates in Pb-based perovskite solar cells (more than 25 %) from 2011 to 2014. More steady annual efficiency growth rates (2 to 7 %) from 2014 to 2021 are attributed to more advanced compositional engineering, such as optimizing bandgap and addressing stability problems, solution and additive engineering with regard thermal annealing, ageing, doping, improving crystallinity and passivating defects. Ultimately, this report states the challenges Sn-based perovskite materials face and improvements that will have to be made to become successful on a commercial scale. One of our key findings is the increase in efficiency from 5 % in 2014 to 13 % in 2020 of Sn-based perovskites making them one of the main contenders to replace Pb-based perovskites. However, significant challenges remain, including reducing their instability and increasing their efficiencies beyond 20 % to make them competitive against their Pb-based counterparts

    Critical residue properties for potency and selectivity of α-Conotoxin RgIA towards α9α10 nicotinic acetylcholine receptors

    No full text
    The α9α10 nicotinic acetylcholine receptor (nAChR) has been characterized as an effective anti-pain target that functions through a non-opioid mechanism. However, as a pentameric ion channel comprised of two different subunits, the specific targeting of α9α10 nAChRs has proven challenging. Previously the 13-amino-acid peptide, RgIA, was shown to block α9α10 nAChRs with high potency and specificity. This peptide, characterized from the venom of the carnivorous marine snail, Conus regius, produced analgesia in several rodent models of chronic pain. Despite promising pre-clinical data in behavioral assays, the number of specific α9α10 nAChR antagonists remains small and the physiological mechanisms of analgesia remain cryptic. In this study, we implement amino-acid substitutions to definitively characterize the chemical properties of RgIA that contribute to its activity against α9α10 nAChRs. Using this mutational approach, we determined the vital role of biochemical side-chain properties and amino acids in the second loop that are amenable to substitutions to further engineer next-generation analogs for the blockade of α9α10 nAChRs

    Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo

    No full text
    Signal transduction modifiers that modulate the lysophosphatidic acid (LPA) pathway have potential as anticancer agents. Herein, we describe metabolically stabilized LPA analogues that reduce cell migration and invasion and cause regression of orthotopic breast tumors in vivo. Two diastereoisomeric α-bromophosphonates (BrP-LPA) were synthesized, and the pharmacology was determined for five LPA G protein-coupled receptors (GPCRs). The syn and anti diastereomers of BrP-LPA are pan-LPA GPCR antagonists and are also nanomolar inhibitors of the lysophospholipase D activity of autotaxin, the dominant biosynthetic source of LPA. Computational models correctly predicted the diastereoselectivity of antagonism for three GPCR isoforms. The anti isomer of BrP-LPA was more effective than syn isomer in reducing migration of MDA-MB-231 cells, and the anti isomer was superior in reducing invasion of these cells. Finally, orthotopic breast cancer xenografts were established in nude mice by injection of MB-231 cells in an in situ cross-linkable extracellular matrix. After 2 weeks, mice were treated with the BrP-LPA alone (10 mg/kg), Taxol alone (10 mg/kg), or Taxol followed by BrP-LPA. All treatments significantly reduced tumor burden, and BrP-LPA was superior to Taxol in reducing blood vessel density in tumors. Moreover, both the anti- and syn-BrP-LPA significantly reduced tumors at 3 mg/kg. ©2009 American Association for Cancer Research
    • …
    corecore