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Abstract 

Self-assembling bioactive membranes, incorporating structural components of skin 

extracellular matrix (ECM), hyaluronan, and biochemical signaling presenting peptide 

amphiphiles, for recapitulating some aspects of skin tissue microenvironment, are 

proposed in this work. In the presented strategy, the availability of cell-adhesion 

ligands (0-50% RGDS epitope) within 2D membranes is controlled aiming at mastering 

the adhesion of human dermal fibroblasts under serum-free culture conditions. The 

membranes were characterized with respect to their microstructure by scanning 

electron microscopy (SEM), degradability and cell behavior regarding adhesion, 

proliferation, cytoskeleton organization and epitope distribution. SEM of the 

membrane surface showed a network of nanofibers that are remarkably reminiscent of 

the filamentous structure found in the ECM. Confocal microscopy images, using a 

fluorescently labeled RGDS-peptide, showed that the RGDS signal is uniformly 

distributed on the membranes. Degradation studies indicated that the membranes are 
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susceptible to enzymatic degradation by hyaluronidase. In the presence of the enzyme 

at physiological concentration, the membranes degrade gradually over time. When 

grown on membranes with the cell recognition epitope RGDS, fibroblasts had spread 

out and elongated, exhibiting extended filopodia interacting with fibrillar structure of 

the membrane surface, thus showing improved adhesion to the substrate. This study 

demonstrates the positive effect of the RGDS epitope, presented on a self-assembled 

membrane, in promoting cell-matrix interactions. 

 

Keywords: hyaluronan, peptides, self-assembly, membranes, fibroblasts, skin 

Page 8 of 55Biomaterials Science



3 

 

1. Introduction 

The extracellular matrix (ECM) of tissues is a dynamic and hierarchically organized 

composite structure of various fibrillar proteins and glycosaminoglycans. This network 

not only has a structural role, providing support and tensile strength for tissues and 

acting as scaffolds for cell adhesion and organization, but also serves as a storage for 

growth factors, chemokines and cytokines, and as template for tissue morphogenesis 

and cell differentiation
1-3

. 

In skin, the ECM is the largest component of the dermal layer, being composed by 

structural proteins, like elastin that confers skin elasticity, and collagens, primarily type 

I and III, which provide structure, strength and integrity
4
. Cell-adhesive proteins like 

fibronectin, laminin and vitronectin are also present in skin ECM. These glycoproteins 

have the capacity to bind to cells, via integrins, and to other components of the ECM, 

namely to glycosaminoglycans, excepting hyaluronan (HA), which is one of the major 

ECM components in skin
4-5

. HA is an extremely large polymer made up of N-

acetylglucosamine and glucuronic acid disaccharide repeating unit (Fig. 1A). High 

molecular weight HA acts as an ECM organizer which concentrates and organizes the 

assembly of other proteins in the ECM by providing a macromolecular template, thus 

contributing to tissue architecture and function during homeostasis
6-7

. These 

properties confer HA many unique advantages as a starting material for skin 

regeneration applications.  

Cell adhesion to native ECM is mediated through binding of integrin proteins on the 

cell surface and specific epitopes present on proteins of the ECM, creating a focal 

adhesion, responsible for anchoring the cell and the communication between cell 

cytoskeleton and the surrounding environment
8
. One of ECM cell adhesive proteins, 
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fibronectin, binds to integrins through a domain containing Arg-Gly-Asp-Ser (RGDS)
9
. 

This sequence, first proposed by Pierschbacher and Rouslahti, functions as a general 

cell adhesive sequence
10

 and has been widely used in biomaterials functionalization, 

including HA-based hydrogels
11-13

, improving cell adhesion and subsequent 

proliferation
14-17

.  

Peptides represent an interesting family of building blocks which can self-assemble to 

create a large number of nanostructures, such as micelles, vesicles and nanofibers
18-20

. 

Thus, by self-assembly, structurally simple building blocks can be easily gathered to 

create functionally complex materials
8
.  

Bottom-up approaches based on the self-assembly of small molecules provide a 

unique set of advantages to create biomaterials as they offer the possibility of 

controlling the architecture, shape and dimensions of the bioactive nanostructures, as 

well as the spatial display and density of the bioactive signals 
21

. The architectural 

resemblance of self-assembled nanofibers to filamentous structures found in natural 

ECMs represents an additional feature to attain superior biomimetic scaffolds, and a 

clear advantage in biomaterials engineering. 

The fabrication of artificial ECMs can be used to mimic the properties of native tissues 

as well as to reconstruct cellular microenvironments in vitro. We address this challenge 

by combining self-assembling peptides (peptide amphiphiles) integrating biochemical 

signals (RGDS ligand) to permit cell adhesion and spreading, and functional molecules 

(HA), as components of our matrix. These components were shown to self-assemble in 

2D membranes
22-24

. Through self-assembly, epitope spatial organization can be 

controlled at the micrometer and nanometer scales to guide cellular behavior. 

Materials that selectively interact with cells may be helpful in improving our 
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understanding of key structural and biochemical ECM components, and ultimately, 

harnessing the presentation of specific cues to cells. This represents a simplified 

approach to deconstruct the skin niche and to identify the effect of individual niche 

components over cell behavior.  
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2. Materials and methods 

Hyaluronan (HA) and fluorescein HA 

The hyaluronan used in all experiments had an average molar mass of 2 MDa and was 

purchased from Lifecore Biomedical, Inc (Chaska, USA). HA was fluorescently labeled 

with fluoresceinamine (Fig. 3B) using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) chemistry and following the procedure described by Gajewiak et 

al.
25

. Briefly, HA (50 mg) was dissolved in 20 mL of water to give a 0.25% (w/v) solution, 

which was then mixed with a solution of 5 mg of fluoresceinamine (Sigma, USA) in 20 

mL of dimethylformamide. Next, 100 mg of N-hydroxysuccinimide (NHS, Sigma, USA) 

was added, and the solution pH was adjusted to 4.75 with 0.01 M HCl. Finally, 50 mg of 

EDC (Sigma, USA) was mixed maintaining the solution pH at 4.75. After 12 h, the 

solution was transferred to dialysis tubing (2000 Da MWCO, Sigma, USA)) and dialyzed 

exhaustively against 100 mM NaCl, followed by dialysis against distilled water and 

lyophilization. 

 

Peptide amphiphiles synthesis and purification 

Three different peptide amphiphiles (PAs) were synthesized in this work, consisting of 

a peptide segment covalently linked to a 16-carbon alkyl chain: C15H31CO-V3A3K3 (K3-

PA, filler), C15H31CO-V3A3K3RGDS (K3RGDS-PA) and C15H31COV3A3K3DGSR (K3DGSR-PA, 

scrambled) (Fig.1). The peptides were synthesized on a CS Bio 136XT automated 

peptide synthesizer (CS Bio, USA) using standard 9-fluorenylmethoxycarbonyl (Fmoc) 

based solid phase chemistry on a 4-methylbenzhydrylamine (MBHA) rink amide resin. 

Amino acid couplings were performed using 4 equivalents (4 mmol) of Fmoc protected 

amino acids (Novabiochem®), 4 equivalents of O-(Benzotriazol-1-yl)-N,N,N′,N′-
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tetramethyluronium hexafluorophosphate (HBTU, Novabiochem®) and 6 equivalents 

of N,N-diisopropylethylamine (DIEA, Sigma, USA). Fmoc deprotections were performed 

with 20% piperidine (Sigma, USA) in dimethylformamide. A palmitic acid (C16H32O2) tail 

was manually coupled under the same conditions as the Fmoc-amino acids. Peptide 

cleavage from the resin and removal of the protecting groups was carried out on a 

mixture of trifluoroacetic acid (TFA, Sigma, USA)/triisopropylsilane (TIS, Alfa 

Aesar)/water (95/2.5/2.5)) for 3 h at room temperature. The peptide mixture was 

collected and excess TFA was removed by rotary evaporation. The resulting viscous 

peptide solution was triturated with cold diethyl ether. The white precipitate was 

collected by filtration, washed with cold ether, and allowed to dry under vacuum 

overnight. The peptide mass was confirmed by electrospray ionization mass 

spectrometry (ESI-MS, Thermo Electron Corporation Finnigan LXQ MS Waltham, USA). 

Peptides were then purified on a Waters 2545 Binary Gradient high-performance liquid 

chromatography (HPLC) system using a preparative reverse-phase C18 column 

(Atlantis Prep OBD T3 Column, Waters) and a water/acetonitrile (0.1% TFA) gradient. 

TFA counter-ions were exchanged by sublimation from 0.1 M hydrochloric acid. Finally, 

the peptides were dialyzed against ultrapure water using 500 MWCO dialysis tubing 

(Spectrum labs, The Netherlands), and lyophilized. Confirmation of mass and purity 

was done by ESI-MS and HPLC (Supplementary Information, Fig. S1-S3). 

A fluorescent version of K3RGDS-PA, C15H31CO-V3A3K3KrhodRGDS (Fig. 3B), was also 

synthesized to allow examining the availability/distribution of the RGDS motif within 

and on the surface of the membranes. For that, an additional lysine residue, with a 4-

Methyl trityl (Mtt) protecting group in the ε amine of the lysine residue (Fmoc-

Lys(Mtt)-OH), was introduced in the sequence to which the Rhodamine dye was 
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attached. The peptide was grown on the resin and after coupling the palmitic tail, the 

Mtt protecting group was selectively removed with a solution of TFA/TIS/DCM (4:4:92) 

at room temperature. Resin was incubated with deprotection solution for 5 minutes 

and washed thoroughly with DCM. These steps were repeated until the resin no longer 

turned yellow. Then, peptide-resin (150 mg) was swollen in 1150 µL of DMF and 50 µL 

of DIEA. Ten milligrams of 5-(and 6)-carboxytetramethylrhodamine succinimidyl ester 

(NHS-rhodamine) were dissolved in the supernatant from the beads swelling step and 

added to the resin. The reaction took place at room temperature, overnight, and 

protected from light. After repeatedly washes with DMF and methanol, the peptide 

was cleaved from the resin following the procedure described above for the other 

peptides, and purified by HPLC. Mass was confirmed by matrix assisted laser 

desorption/ionization mass spectrometry (MALDI-MS, 4800 MALDI-TOF/TOF, AbSciex) 

(Supplementary Information, Fig. S4). 

 

Peptide amphiphiles characterization 

Circular dichroism (CD) spectroscopy  

Peptides were dissolved in deionized water to a final concentration of 0.033 mM and 

the pH was adjusted to 5, 7 and 9. The CD measurements were performed in a PiStar-

180 spectrometer from Applied Photophysics (Surrey, UK), under a constant flow of 

nitrogen (8 L.min
-1

) at a constant pressure value of 0.7 MPa. Far-UV spectra were 

recorded at 25 ºC from 190 to 300 nm in a quartz cuvette with 1 mm path-length. All 

scans were performed in the steady state with a bandwidth of 1 nm and each 

represented spectrum is an average of 5 spectra.  
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Transmission electron microscopy (TEM) 

Samples for TEM analysis were prepared by placing a drop of 0.1 mM peptide solution 

directly on the 400 mesh carbon-coated copper TEM grid (Ted Pella, USA). For negative 

staining a drop of 2% (w/v) uranyl acetate aqueous solution was placed on the 

samples. After ca. 3 minutes, the excess solution was wiped away by a piece of filter 

paper, and the sample was allowed to dry under ambient conditions. All images were 

collected with a JEOL JEM-1010 transmission electron microscope at 100 kV ( JEOL, 

USA). 

 

Characterization of PA-HA interactions 

Quartz crystal microbalance with dissipation (QCM-D)  

Measurements were performed in a quartz crystal microbalance with dissipation 

monitoring (QCM-D E4) from Q-Sense (Gothenburg, Sweden). All the experiments 

were performed at 25 ºC with a constant flow rate of 50 µl/min using gold coated 

crystals (QSX301, Q-Sense, Goteborg, Sweden) previously cleaned with water and H2O2 

for 1 h each, and then acetone, ethanol and isopropanol for 3 minutes each at 37 ºC 

with sonication. The system was equilibrated with a 0.15 M sodium chloride (NaCl) 

solution to obtain a stable frequency and dissipation baseline signal. Once the signal 

was stable, the NaCl solution was replaced by a solution of K3-PA (0.2% (w/v) in 0.15 M 

NaCl) during 30 minutes. To remove weakly bound peptide, the crystals were rinsed 

with a NaCl solution and then replaced by a solution of HA (0.1% (w/v) in 0.15 M NaCl) 

for 30 minutes. Again, to remove weakly bound polymer, the system was rinsed with 

NaCl. The QCM instrument recorded frequencies up to the 13
th

 overtone, and Δf and 

ΔD were monitored in real time. In the present study the results are shown for the 7
th
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overtone, the frequency of this overtone was normalized to the fundamental resonant 

frequency of the quartz crystal, by dividing it by ν (where ν = 7). 

 

PA-HA membrane preparation 

PA-HA membranes were prepared using a 48 well plate as template in a sterile 

environment. 150 µL of a 1% (w/v) HA solution was cast on the bottom of the wells 

and then 150 µL of a 2% (w/v) K3-PA solution was added on top of the HA solution. A 

membrane is immediately formed upon contact between the two solutions. The 

membrane was allowed to grow with time (overnight) as reported previously
23

. The 

membranes were rinsed with sterile ultrapure water to ensure the removal of 

unreacted HA and PA.  

 

PA-HA membrane characterization 

Scanning electron microscopy (SEM) 

The microstructure of the membranes was analyzed by SEM. Samples were fixed in a 

2% glutaraldehyde/3% sucrose in PBS for 1 h at 4 ºC followed by sequential 

dehydration in graded ethanol concentrations (from 20 to 100%). To remove ethanol, 

samples were chemically dried in hexamethyldisilazane (HMDS, Electron Microscopy 

Sciences, USA) 3 times, 15 minutes each, and HMDS excess allowed to evaporate. Prior 

observation, the samples were coated with a gold/palladium layer and imaged using 

an ultra-high resolution field emission gun scanning electron microscope (Nova™ 

NanoSEM 200) from FEI (Eindhoven, The Netherlands).  

 

Confocal microscopy 
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Confocal microscopy was used to probe the location and retention of fluorescently-

labeled HA as well as to visualize the distribution of RGDS signal on (surface) and 

within (cross-section) the PA-HA membrane. Membranes were formed as previously 

described using fluorescein HA solution (1%, w/v) and 2% (w/v) peptide mixture 

containing 0.1% of K3KrhodRGDS-PA and 99.9% of K3-PA. The membranes were 

incubated overnight at RT protected from light. After washing, membranes were 

transferred to glass microscopy slides, covered with a glass coverslip, and sealed to 

prevent dehydration. Membranes were imaged by laser scanning confocal microscope 

(LSCM, Olympus FluoView 1000, Japan) with the appropriate excitation and emission 

wavelengths. Optical slices were captured at regular intervals to produce 

reconstructed z-stacks with 100 µm total thickness. Images of cross sections were 

compiled from z-stack in the x-direction using FV10-ASW software from Olympus. 

 

In vitro enzymatic degradation  

Degradation behavior of the PA-HA membranes in the absence and presence of a HA-

degrading enzyme (hyaluronidase, HAase) was analyzed in vitro. Bovine testicular 

HAase (Type IV, EC 3.2.1.35) was obtained from Sigma (USA). This enzyme has the 

ability to hydrolyze β(1,4) glycosidic bonds between N-acetyl-D-glucosamine and D-

glucuronate residues producing HA fragments with a N-acetyl-D-glucosamine at the 

reducing end. The enzyme activity can thus be measured by the quantification of these 

reducing ends. Degradation studies were carried out by incubating PA-HA membranes 

in PBS at 37 ºC in the absence (control) or presence of HAase at different 

concentrations, 2.6 U/mL HAase (to simulate physiological conditions in human 

plasma) and 50 U/mL HAase, for 14 days. The enzyme solution was replaced every 72 h 
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throughout the study and stored frozen until analysis. At predetermined time points, 

the solution was completely collected for further quantification of N-acetylamino 

sugars using the fluorimetric Morgan-Elson assay method
26

. A calibration curve of N-

acetyl-D-glucosamine (NAG) standards was used. HA fragments resulting from 

enzymatic hydrolysis were identified by mass spectrometry in the negative mode 

(Thermo Electron Corporation Finnigan LXQ MS Waltham, USA). The morphology of 

the membranes after degradation was analyzed by SEM. 

 

Cell culture studies 

Isolation and culture of human primary fibroblasts 

Human dermal fibroblasts (hDFb) were isolated from skin samples discarded from 

abdominoplasty surgeries of consenting patients at Hospital da Prelada (Porto, 

Portugal). Briefly, the skin tissue was cut in pieces of 0.5 by 0.5 cm and digested in a 

dispase solution (2.4 U/mL in PBS) at 4 ºC, overnight. After removing the epidermis, 

the fibroblasts were isolated from the dermis by overnight digestion of the dermal 

pieces in a collagenase IA solution (125 U/mL in PBS) at 4 ºC. Digestion products were 

poured through a 100 µm cell strainer and centrifuged at 200 g for 5 minutes. The 

pellet was resuspended and the cells were subsequently cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) (Sigma, Germany) supplemented with 10% of fetal 

bovine serum (FBS, Gibco, UK) and 1% (v/v) antibiotic/antimycotic solution (A/B) 

(Gibco, UK) containing 100 units/mL penicillin and 100 mg/mL streptomycin, in a 37 ºC 

humidified atmosphere with 5% CO2. 

 

hDFb culture on the PA-HA membranes 
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To study the effect of RGDS signaling on cell adhesion, PA-HA membranes containing 

different percentages of RGDS motif were prepared by mixing the filler peptide (K3-PA) 

with 1%, 10% and 50% K3RGDS-PA and 10% scrambled peptide (K3DGSR-PA) to give a 

2% (w/v) final peptide concentration. HA sterilization for cell studies was done by 

dissolving the polymer, filtering the solution through a 0.22 µm filter, followed by 

lyophilization in sterile falcon tubes. Peptide solutions were sterilized by UV exposure 

for 15 minutes. Membranes were prepared following the procedure previously 

described under sterile conditions. Confluent hDFbs, at passage 4, were harvested 

from monolayer cultures using trypsin-EDTA (Invitrogen, USA). Cells were washed in 

PBS and centrifuged at 200 g for 10 minutes in order to remove serum residues. Cell 

pellet was then resuspended at a density of 5.0 x 10
4
 cells/mL

 
in serum-free DMEM 

without phenol red (Sigma, Germany) supplemented with 1% (v/v) A/B. Cells (2.5 x 

10
4
cells/well) were cultured on the PA-HA membranes in 48 well plates at 37 ºC in a 

humidified atmosphere of 5% CO2 for 2, 6, 12 and 24 h. hDFbs cultured on tissue 

culture polystyrene (TCPS) coverslips were used as control. Cells cultured on the 

membranes were examined under SEM to analyze cell morphology and cell-matrix 

interactions. Cell cultured membranes were fixed, dehydrated and prepared as 

described for SEM analysis. 

 

F-actin staining 

Staining for the F-actin cytoskeleton fibers of attached hDFbs was carried out after 

fixing cells in 10% formalin solution neutral buffer (Sigma-Aldrich, Germany) for 30 

minutes at 4 ºC. Cells were then washed once with 0.1 M Glycine in PBS and twice with 

PBS and permeabilized with 2% BSA/ 0.2% Triton X-100 solution for 1 h at RT. Samples 
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were incubated with TRITC-conjugated phalloidin (1U/mL, Sigma-Aldrich, Germany) for 

1 h at RT. Cell nuclei were counterstained with 1 mg/mL DAPI (1:1000, Sigma-Aldrich, 

Germany) for 1 min and washed with PBS. Visualization was performed by CLSM 

(Olympus FluoView 1000, Olympus, Japan). Background was subtracted and images 

were processed using ImageJ software (NIH, USA). 

 

dsDNA quantification 

The number of cells adherent to the membranes was assessed at different culture 

times by quantifying the amount of double-stranded DNA (dsDNA). Quantification was 

performed using the Quant-iT
™

 PicoGreen
®
 dsDNA Assay Kit (Invitrogen, Molecular 

Probes, Oregon, USA), according to the instructions of the manufacturer. Briefly, cells 

on the different membranes were lysed by osmotic and thermal shock and the 

supernatant used for the DNA quantification. The fluorescent intensity of the dye was 

measured in a microplate reader (Synergie HT, Bio-Tek, USA) with excitation at 485/20 

nm and emission at 528/20 nm. The DNA concentration for each sample was 

calculated using a standard curve (DNA concentration ranging from 0 to 1.5 mg/mL) 

relating quantity of DNA and fluorescence intensity. Triplicates were made for each 

time point and for each sample. 

 

Data analysis and statistics 

Statistical analysis for NAG and DNA quantification was performed using the non-

parametric Kruskal-Wallis test, after testing the normality of our data with Shapiro-

Wilk test. Dunn’s post-hoc test were carried out to determine the differences between 
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the various conditions under this study. Values of p< 0.05 were considered to 

determine statistically significant differences between the groups.  
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3. Results and discussion 

Peptide design and formulation in the bioactive membranes  

The self-assembling peptides used in this study are amphiphilic peptides consisting in a 

linear hydrophobic segment coupled to a peptide sequence, that includes a β-sheet 

forming sequence (VVVAAA) and a domain with positively charged amino lysines (KKK) 

to bind the anionic HA (K3-PA). This class of self-assembling peptides, known as peptide 

amphiphiles (PAs), was proposed by Stupp’s group for different biomedical 

applications
19, 27-28

. The fibronectin-derived RGDS epitope was incorporated into the 

peptide structure (K3RGDS-PA) due to its known properties on mediating cell adhesion 

(Fig. 1A). Different PA molecules have been co-assembled, allowing for a specific 

bioactive molecule to be mixed with a non-bioactive diluent molecule
29-32

 to vary the 

epitope density on the assembled structures for optimized cell signaling. For example, 

Webber and co-workers
29

 have investigated the co-assembly of a positively charged PA 

containing the RGDS sequence (K3RGDS-PA) with negative diluent PA (E3-PA) with the 

aim of producing mixed binary nanofibers. By varying the RGDS composition on 

surfaces coated with the co-assembled peptide nanofibers, they were able to 

determine the optimal RGDS density on the adhesion of bone-marrow mononuclear 

cells. While this co-assembly strategy has been explored by other groups, using coated 

surfaces
29, 31

 or self-assembled gels
32

, the co-assembly of RGDS-containing peptides 

with HA in self-assembled membranes has been explored by our group
33

. In this 

configuration, the membranes present different densities of biomolecular signals 

designed to enhance cell adhesion, but other biochemical functionalities can be 

incorporated, like growth-factor binding sequences relevant in wound healing. 
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Previous studies have shown that the formation of stable β-sheet is very important 

and necessary for peptide self-assembly
20, 34

. Although the formation of β-sheet 

secondary structure of K3-PA has been demonstrated previously
35

, the inclusion of the 

RGDS (or DGSR) in the PA sequence could disturb that rearrangement and 

consequently affect the stability of self-assembled membranes. Therefore, circular 

dichroism (CD) spectroscopy was performed to evaluate the secondary structure of the 

synthesized peptides (Fig. 1B). The CD analysis of the PAs revealed the presence of 

hydrogen-bonded structures, namely β-sheets or random coil, depending on the pH. At 

pH 9, a typical spectrum of β-sheet structure was observed for all the molecules, with a 

minimum in the 210-220 nm range, a crossover from positive to negative above 190 

nm, and a positive ellipticity around 200 nm. The scrambled peptide showed this 

conformation in all the studied pH conditions, with stronger peaks at 205 nm. Below 

pH 9, the K3RGDS-PA showed a random coil conformation. K3-PA presented a β-sheet 

structure with a minimum at 220 nm and a maximum at 205 nm at pH 7, and a random 

coil conformation at pH 5. TEM analysis showed the formation of nanofibers for all the 

peptides, but K3DGSR-PA formed shorter fibers than the K3 and K3RGDS-PAs (Fig. 1C). 

 

PA-HA interaction 

Previous studies have shown the ability of K3-PA to interact with HA and form 

macroscopic structures, such sacs and membranes, by self-assembly
22-24

. In the herein 

presented work, we have investigated, for the first time, the interactions between 

these two molecules by QCM-D. This technique allows marker-free measurement of 

specific interactions between immobilized molecules and analytes in solution and has 

been widely used for studying macromolecular interactions. Due to its sensitivity, 
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allows detecting mass changes of the order of ng.cm
-2

, and permits to measure the 

viscoelastic properties of the resulting film
36-37

. Figure 2 shows the normalized 

frequency (Δfν/ν, where ν is the overtone) and dissipation (ΔD) variations for the 7
th

 

overtone (35 MHz). The first 15 minutes in Figure 2 show the establishment of the 

baseline with 0.15 M NaCl. The subsequent 45 minutes correspond to the deposition 

of K3-PA, where a decrease in the frequency (of about 23 Hz) and an increase in ΔD 

were observed. After rinsing with NaCl, the hyaluronan solution was pumped 

continuously for 45 minutes, when an adsorption plateau was attained. A decrease in 

frequency of 38 Hz was registered, and again an increase in dissipation has occurred. 

After HA deposition, the film was again rinsed with NaCl. During this washing step, the 

variation in both Δf and ΔD was very small, indicating the formation of a stable film 

and a strong interaction between both molecules. The frequency variation, Δf, 

decreases with time, due to the deposition of peptide or hyaluronan on the quartz 

crystal. On the other hand, the dissipation, ΔD, increases, revealing that the film is not 

rigid and begins dissipating energy, thus exhibiting the typical viscoelastic behavior. 

This behavior has been observed before when studying the interaction between 

poly(L-lysine) and hyaluronan by QCM-D
38

. The QCM-D results demonstrated and 

confirmed the strong interaction between the K3-PA and HA and the formation of 

stable complex. 

 

Membrane microstructure and degradation 

In this work, we aimed to recreate some aspects of the physical and biochemical 

environment of skin tissue. It was shown previously that hierarchical membranes can 

be formed by instant self-assembly between a positively charged PA (K3-PA) and the 
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megadalton hyaluronan (HA) under certain conditions
22-23

. We thought that these 

fibrillar membranes, containing components of skin ECM, could provide a starting 

platform to design complex biomimetic environments of skin ECM (Fig. 3). SEM 

analysis of the microstructure of the membranes revealed a very highly organized 

structure exhibiting two distinct surfaces, as observed previously
22-23, 32

. The surface 

corresponding to the HA side (Fig. 3C1) is characterized by a rough and amorphous 

structure, whereas the peptide side (Fig. 3C2), exhibit a network of organized 

nanostructures (nanofibers) randomly distributed, resembling the fibrillar structure of 

natural ECM. SEM micrographs of the cross section revealed a membrane with around 

14 μm in thickness and aligned nanofiber bundles perpendicular to the interface (Fig. 

3C3). To investigate if the addition of the K3RGDS-PA would affect the membrane 

microstructure and morphology, SEM was used to image membranes containing 50% 

K3RGDS-PA. Membranes containing 50% of K3RGDS-PA presented a similar thickness 

and microstructure to the ones formed with 100% of K3-PA (Fig. S5, supplementary 

information). Fluorescent micrographs obtained by confocal microscopy, using the 

fluorescently labeled K3KrhodRGDS-PA (red) and hyaluronan (green), showed a perfect 

overlap of the two, in yellow, resulting from the interaction between the peptide and 

hyaluronan (Fig. 3B2). This strong yellow region is also seen in a software simulated 

cross section (Fig. 3B1), surrounded by a soft area in red or green, that correspond to 

the peptide and hyaluronan side, respectively. The uniform distribution of the red 

signal showed that RGDS molecules were well distributed within the membranes 

although the spatio control of the signal on specific locations of the membrane is yet a 

major challenge. 
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The natural ECM is an extremely dynamic network that consists of protein fibers and 

glycosaminoglycans that support cell fate and provide biophysical and biochemical 

cues to cells through cell surface receptors, such as integrins
1-2, 39

. Cells degrade the 

ECM through proteases during their migration. Synthetic ECM matrices that aim to 

provide an environment for tissue regeneration should recapitulate key features of the 

natural ECM such as integrin mediated cell binding, cell migration, and cell 

proliferation, while also allowing their degradation, offering a platform on which cell-

triggered remodeling could occur. To mimic the turnover of natural ECM, our matrices 

were designed to be sensitive to enzymes expressed by surrounding cells (e.g. 

hyaluronidase). This cell-mediated degradation is a process reminiscent of tissue 

remodeling. It is well known that the degradation of hyaluronan into large 

oligosaccharides is mediated by hyaluronidase
40

. Therefore, the degradation behavior 

of the PA-HA membranes was studied in three different conditions, PBS and PBS 

containing 2.6 U/mL and 50 U/mL HAase. Degradation was followed by the 

quantification of N-acetylglucosamine in solution and by SEM analysis (Fig. 4). 

Incubation in PBS up to 14 days did not cause degradation of the membranes since the 

amount of N-acetylamino sugars in the supernatant was significantly lower than the 

obtained for the membranes incubated in the higher enzyme concentration (50 U/mL). 

Compared with the physiological concentration (2.6 U/mL), only for the latest time 

point a statistically difference was observed. In addition, no evident signs of 

degradation are observed in the SEM images for the membranes incubated in PBS 

only. This result indicates that the membranes are relatively stable in buffer saline 

solutions, but are susceptible to enzymatic degradation by HAase. As expected, the 

membrane degradation was significantly enhanced when incubated with higher 
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enzyme concentration (50 U/mL) than when in presence of the enzyme at 

physiological conditions (2.6 U/mL), as demonstrated by the higher amount of released 

N-acetylamino sugars (Fig. 4A). SEM analysis of the membranes collected at different 

time points corroborates these results, showing the appearance of pores on the 

membrane surface (Fig. 4B1) and cross-section (Fig. 4B2), as a result of HA degradation 

by HAase. At a higher HAase concentration (50 U/mL) the degradation of the 

membranes is more evident, but progressive along the time (Fig. 4B1-B2). 

The presence of HA oligosaccharides as degradation products was confirmed by mass 

spectroscopy. ESI-MS analysis of the supernatants after membrane degradation in 2.6 

U/mL HAase solution for 7 days showed three main peaks, corresponding to [HA]11: 

[M-2H]
2-

 m/z= 1046.25, [HA]12: [M-2H]
2-

 m/z= 1142 and [HA]14 [M-2H]
2-

 m/z= 1332.17 

(Fig 4C)
41

. The observed mass for [HA]11 is a fragmentation product of ESI-MS since 

digestion with HAase produces even-numbered oligosaccharides. To confirm that the 

observed masses are not caused by the technique itself ESI-MS analysis was performed 

of a HA solution (Fig. S6, supplementary information) but no known masses of HA 

oligosaccharides were identified. 

The membranes herein presented were shown to degrade gradually over time in the 

presence of HAase at physiological concentration. In addition, it is expected that the 

peptide component of the membrane will degrade overtime by hydrolytic and 

enzymatic processes into amino acids, which are nontoxic and easily cleared in the 

body. Peptides can be designed to be susceptible to enzymatic cleavage by 

incorporating matrix metalloproteases (MMPs)-sensitive peptide sequences
42-43

, a 

strategy that is currently being explored in our lab. By having membranes sensitive to 

enzymatic activities, we are pursuing the goal of biomimetic matrix degradation. These 

Page 27 of 55 Biomaterials Science



22 

 

PA-HA membranes may present an advantage over other systems, once slow 

degradation will enable the migration of the adhered cells, as well as matrix 

remodeling and new tissue formation led by the artificial ECM template 

 

Fibroblast response to the PA-HA self-assembled membranes displaying different 

densities of the RGDS epitope 

Preliminary studies were performed with hDFb cultured on K3PA-HA membranes in 

DMEM with 10% FBS up to 7 days. These studies indicated that these membranes 

supported the adherence of fibroblasts, without presenting cytotoxicity (Fig. S7, 

supplementary information). 

Understanding the factors that regulate cell behavior is important in many therapeutic 

applications. In most studies, cell behavior is studied in culture medium supplemented 

with serum, which is poorly defined in terms of proteins content. To investigate 

whether the produced PA-HA membranes could integrate cell-adhesive ligands and 

anchor human dermal fibroblasts, serum-free culture conditions were used to 

eliminate the complexity of the competing adsorption process of serum proteins on 

the membrane surface.  

It has been shown that fibroblast survival, proliferation and migration are dependent 

on cell adhesion and that fibronectin (FN) binding domains have significant 

implications on skin wound healing
4
. These activities require fibroblast attachment to 

RGD sequence in the tenth FN type III repeat, via cell surface membrane integrin 

receptors
44

. Several authors reported that inert biomaterials benefit from the presence 

of the RGDS signaling molecule for optimal cell recognition and adhesion
14-16, 31

. To 

enhance the adhesion of cells on the developed PA-HA membranes, the RGDS motif 
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(which is a known ligand for integrin receptors) was incorporated into the PA structure 

creating adhesion points to support integrin-mediated cellular adhesion and migration 

on the membranes. Previous studies have shown that the density of the RGDS epitope 

impacts cell recognition and adhesion
45

. Considering this, experiments were 

performed varying the K3RGDS-PA composition on the membranes (1, 10 and 50%) to 

determine the optimal RGDS density. Membranes containing 10% K3DGSR-PA or only 

K3-PA were used as controls. 

DNA quantification results (Fig. 5A) showed that when seeded on 50% K3RGDS-PA 

containing membranes, hDFb adhered at significantly higher number than on the ones 

with lower concentration of RGDS, 1 and 10%, or without RGDS, K3-PA and K3DGSR-PA 

for all time points except at 12h of culture. 

Cell morphology and distribution on the membranes was further examined by confocal 

microscopy analysis (Fig. 5B). After the first two hours, fibroblasts were uniformly 

distributed on the membrane surface and a high number of cells was observed on the 

50% K3RGDS-PA containing membranes, as depicted by the higher density of nuclei. 

These results demonstrate the positive effect of the RGDS epitope on promoting cell 

adhesion which is mediated by integrins on the cell surface. Considering the presence 

of HA on the membranes and knowing that CD44, a transmembrane receptor observed 

in a number of different cell types
46

, mediates HA dependent cell adhesion, the 

expression of this receptor by hDFbs was assessed (Supplementary Information, Fig. 

S8) . Although these cells showed a high expression of CD44 (98.67%), cells cultured on 

HA-based hydrogels (Supplementary Information, Fig. S9) did not show strong 

adhesion on these substrates. This result suggest that integrins may play a major role, 

rather than CD44, on cell adhesion on PA-HA membranes. 
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Staining of cell cytoskeleton (Fig. 5B) did not reveal strong organized actin fibers. Most 

of what is known about cell structure and function in vitro derives from cells plated on 

rigid substrates, such as plastic or glass, laminated with a thin film of serum proteins. 

As a result, some prominent aspects of cell structure, such as the elongated 

morphology of cultured fibroblasts or the prevalence of large actin fibers that are 

commonly studied in vitro, are rarely if ever seen in vivo
47-48

. Furthermore, cells 

cultured on soft substrates show diffuse adhesion complexes with poor actin 

cytoskeleton organization
49

 and the PA-HA membranes used in this study were shown 

to have low stiffness (0.9 MPa in the wet state)
23

. 

 Previous findings have also shown that fibronectin fragments containing the RGD cell-

binding domain alone cannot sustain cytoskeletal organization of human dermal 

fibroblasts
50

, which might explain our observations. 

Fibroblasts morphology observed in the SEM micrographs is similar to what has been 

observed previously by others on RGD-coated glass substrates
45

. After 24 hours of 

culture, only the conditions with 10% and 50% K3RGDS-PA showed the majority of the 

cells fully adherent (Fig. 6). In these conditions, fibroblasts had spread out exhibiting 

extended lamellipodia and filopodia interacting with fibrillar structure of the 

membrane surface, thus confirming strong adhesion to the substrate (Fig. 6a and b). In 

contrast, cells cultured on the surface of smooth HA hydrogel (Supplementary 

Information, Fig. S9) were completely round, without showing cell protusions 

(lamellipodia and filopodia) and did not flatten upon contact with the hydrogel surface. 

This result highlights the role of the nanofibrillar structure of the self-assembled 

membranes in controlling cell-matrix interactions. This is in accordance to what was 

reported in the literature, that fibroblasts in 2D cultures normally exhibit a flat 
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morphology with dorsal-ventral polarity and large lamellipodia
51

. We should highlight 

that the cell culture experiments were performed in the absence of serum for the 

entire study and the membranes are displaying the RGDS cell-adhesive domain alone. 

Further experiments are yet needed to investigate cell response to HA-PA membranes 

with higher stiffness and/or with other fibronectin fragment domains in order to be 

able to make additional considerations regarding the effect of each one of these 

variables over cell morphology. 

 

 

4. Conclusion 

This study demonstrated that the 2D membranes, formed by self-assembly between 

hyaluronan and a positively charged peptide amphiphile, are susceptible to enzymatic 

degradation by hyaluronidase. In the presence of hyaluronidase at physiological 

concentration, the membranes slowly degrade overtime. The gradual degradation of 

the membranes is important for allowing the migration of cells and/or the controlled 

release of bioactive molecules incorporated in the membrane that can control the 

function of attached cells. Membranes presenting the cell adhesive ligand RGDS 

showed to increase efficiently the attachment of fibroblasts. This capability to 

incorporate biochemical signals into 2D self-assembled membranes enables the study 

of cellular responses to physiologically relevant signal variations. Furthermore, these 

bioactive matrices permit cell culture studies without serum for short periods. We 

expect that the proposed biodegradable hybrid membranes could offer significant 

potential as a biomimetic bioactive supportive matrix for wound healing. 
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Figure 1. Peptide design and characterization. A) Chemical structure of the building 

blocks used for preparing the self-assembled membranes, hyaluronan (HA) and 

different peptide amphiphiles (PAs): V3A3K3 containing positively charged lysines (KKK) 

to bind the anionic HA, one containing the RGDS epitope (K3RGDS-PA), a scrambled 

version (K3DGSR-PA). B) Circular dichroism spectra of peptide solutions (3.3x10
-5 

M) at 

pH 5, 7 and 9 showing predominant β-sheet secondary structure. C) TEM images of PA 

nanostructures formed by deposition of 0.1 mM solutions in water followed by air 

drying on a carbon-coated TEM grid. 

 

Figure 2. PA-HA interaction. QCM-D monitoring of frequency (Δf, black) and 

dissipation (ΔD, red) changes obtained at 7
th

 overtone, during deposition of peptide 

(step 1) and hyaluronan (step 3) on a bare crystal (step 2 relates to rising). The 

frequency of this overtone was normalized to the fundamental resonant frequency of 

the quartz crystal, by dividing it by ν (where ν = 7). 

 

Figure 3. PA-HA membrane microstructure. A) Schematic representation of PA-HA 

membranes functionalized with bioactive molecules (green) interacting with cell 

integrins (yellow). B) Confocal microscopy images of the membranes prepared with 1% 

(w/v) fluorescein-HA and 2% (w/v) peptide mixture containing 0.1% K3K(Rhod)RGDS-

PA. Images show the localization of HA (green) and PA (red) over the membrane 

surface (B2) and cross section (B1). Yellow represents the overlaping of both 

components. C) SEM micrographs of self-assembled membranes with 1% (w/v) HA and 

2% (w/v) K3-PA, showing the surface on the polymer (C1) and peptide (C2) sides and 

cross section (C3, C4). 

 

Figure 4. Degradation of PA-HA membranes. A) Quantification of N-acetylamino 

sugars released from K3-HA membranes in PBS and PBS containing 2.6 U/mL and 50 

U/mL HAase (*p < 0.05, error bars represent standard deviation (n=3)). B1) SEM 

images showing differences in membrane microstructure when exposed to different 

hyaluronidase (HAase) concentrations up to 14 days. B2) Cross section of the 

membranes before and after exposure to 50 U/mL HAase evidencing that degradation 

is occurring not only on the surface but also inside the membrane. C1) Negative ESI-MS 
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of the supernatant after incubating the membranes in 2.6 U/mL HAase for 7 days 

showing the presence of HA fragments. C2) Observed and theoretical molecular 

masses of HA oligosaccharides. 

 

Figure 5. Cell adhesion on PA-HA membranes. dsDNA quantification (A) (*p < 0.05,  

error bars represent standard deviation (n=3)) and confocal fluorescence images (B) of 

hDFb cultured on HA-PA membranes containing 1, 10 and 50% K3RGDS-PA or 10% 

(w/v) K3DGSR-PA up to 24 hours of culture. F-actin was labeled with TRITC-phalloidin 

(red) and nuclei with DAPI (blue). 

 

Figure 6. Cell morphology on PA-HA membranes. A) SEM micrographs of hDFb 

cultured on HA-PA membranes containing 1, 10 and 50% K3RGDS-PA or 10% (w/v) 

K3DGSR-PA. Cells were cultured on the PA side in medium without FBS up to 24 h. a) 

and b) show a higher magnification of the surfaces of HA-PA membranes with 10 and 

50% (w/v) RGDS, respectively. Black and white arrows indicate the presence of 

filopodia and lamellipodia, respectively. 
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preparing the self-assembled membranes, hyaluronan (HA) and different peptide amphiphiles (PAs): 

V3A3K3 containing positively charged lysines (KKK) to bind the anionic HA, one containing the RGDS epitope 

(K3RGDS-PA), a scrambled version (K3DGSR-PA). B) Circular dichroism spectra of peptide solutions 
(3.3x10-5 M) at pH 5, 7 and 9 showing predominant β-sheet secondary structure. C) TEM images of PA 

nanostructures formed by deposition of 0.1 mM solutions in water followed by air drying on a carbon-coated 
TEM grid.  
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Figure 2. PA-HA interaction. QCM-D monitoring of frequency (∆f, black) and dissipation (∆D, red) changes 
obtained at 7th overtone, during deposition of peptide (step 1) and hyaluronan (step 3) on a bare crystal 

(step 2 relates to rising). The frequency of this overtone was normalized to the fundamental resonant 

frequency of the quartz crystal, by dividing it by ν (where ν = 7).  
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Figure 3. PA-HA membrane microstructure. A) Schematic representation of PA-HA membranes functionalized 
with bioactive molecules (green) interacting with cell integrins (yellow). B) Confocal microscopy images of 
the membranes prepared with 1% (w/v) fluorescein-HA and 2% (w/v) peptide mixture containing 0.1% 

K3K(Rhod)RGDS-PA. Images show the localization of HA (green) and PA (red) over the membrane surface 
(B2) and cross section (B1). Yellow represents the overlaping of both components. C) SEM micrographs of 
self-assembled membranes with 1% (w/v) HA and 2% (w/v) K3-PA, showing the surface on the polymer 

(C1) and peptide (C2) sides and cross section (C3, C4).  
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Figure 4. Degradation of PA-HA membranes. A) Quantification of N-acetylamino sugars released from K3-HA 
membranes in PBS and PBS containing 2.6 U/mL and 50 U/mL HAase (*p < 0.05, error bars represent 

standard deviation (n=3)). B1) SEM images showing differences in membrane microstructure when exposed 

to different hyaluronidase (HAase) concentrations up to 14 days. B2) Cross section of the membranes before 
and after exposure to 50 U/mL HAase evidencing that degradation is occurring not only on the surface but 
also inside the membrane. C1) Negative ESI-MS of the supernatant after incubating the membranes in 2.6 
U/mL HAase for 7 days showing the presence of HA fragments. C2) Observed and theoretical molecular 

masses of HA oligosaccharides.  
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Figure 5. Cell adhesion on PA-HA membranes. dsDNA quantification (A) (*p < 0.05,  error bars represent 
standard deviation (n=3)) and confocal fluorescence images (B) of hDFb cultured on HA-PA membranes 
containing 1, 10 and 50% K3RGDS-PA or 10% (w/v) K3DGSR-PA up to 24 hours of culture. F-actin was 

labeled with TRITC-phalloidin (red) and nuclei with DAPI (blue).  
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Figure 6. Cell morphology on PA-HA membranes. A) SEM micrographs of hDFb cultured on HA-PA 
membranes containing 1, 10 and 50% K3RGDS-PA or 10% (w/v) K3DGSR-PA. Cells were cultured on the PA 

side in medium without FBS up to 24 h. a) and b) show a higher magnification of the surfaces of HA-PA 

membranes with 10 and 50% (w/v) RGDS, respectively. Black and white arrows indicate the presence of 
filopodia and lamellipodia, respectively.  
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Peptide mass and purity 

 

All peptides were synthesized, characterized and purified successfully. ESI and MALDI-MS were 

used to characterize the mass of the synthesized peptides (Fig. S1-S4, A). 

 

The expected mass for C16V3A3K3 (C58H111N13O10) was 1150.58, three main peaks were found by 

ESI-MS, corresponding to [M+H]
+
 m/z = 1151.30, [M+Na]

+
 m/z= 1173.25 and [M+2H]

2+
 m/z = 

576.48 (Fig. S1A). 

The expected mass for C16V3A3K3RGDS (C73H136N20O17) was 1565.98, two mains peaks were 

found, corresponding to [M+2H]
2+

 m/z = 784.09 and [M+3H]
3+

 m/z = 523.39 (Fig. S2A). For 

C16V3A3K3DGSR (C73H136N20O17) the expected mass was 1566.01, two mains peaks were found, 

corresponding to [M+2H]
2+

 m/z = 784.03 and [M+3H]
3+

 m/z = 523.41 (Fig. S3A). 

The expected mass for C16V3A3K3KrhodRGDS was 2108.27, two main peaks were found by 

MALDI-MS, m/z = 2106.54 and m/z = 1694.34, corresponding to the labeled and unlabeled 

peptide, respectively (Fig. S4A). 

 

Analytical HPLC of the collected fractions showed a single peak after purification for all the PAs 

(Fig. S1-S4, B) 
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C16V3A3K3 

 

 

 

Figure S1. Representative ESI-MS data (A) and analytical HPLC trace, detected at 220 nm (B) of 

C16V3A3K3. 
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C16V3A3K3RGDS 

 

 

Figure S2. Representative ESI-MS data (A) and analytical HPLC trace, detected at 220 nm (B) of 

C16V3A3K3RGDS. 
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C16V3A3K3DGSR 

 

 

 

Figure S3. Representative ESI-MS data (A) and analytical HPLC trace, detected at 220 nm (B) of 

C16V3A3K3DGSR. 
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C16V3A3K3KRhodRGDS-PA 

 

 

 

 

Figure S4. Representative MALDI-MS data (A) and analytical HPLC trace, detected at 220 nm 

(B) of C16V3A3K3KRhodRGDS-PA. 
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Microstructure of 50% K3RGDS-PA membrane 

 

Figure S5. SEM micrographs of the cross section of a 50% K3RGDS-HA membrane. 
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Identification of HA oligosaccharides from the enzymatic degradation of PA-HA membranes  

by mass spectrometry 

ESI-MS analysis of 0.1% (w/v) HA solution (control) and of the supernatant after incubating the 

membranes in 50 U/mL HAase for 14 days (Fig. S6) showed the presence of HA 

oligosaccharides only for the samples from degradation solutions. Peaks at 331.8, 389.8 and 

411.7 were detected corresponding to the masses of HA oligosaccharides with 7, 4 and 13-

mers, respectively, with 4 charges m/z= 331.8 [MHA7-4H]
4-

; 2 charges m/z= 389.8 [MHA4-2H]
2-

 

and with 6 charges m/z= 411.7 [MHA13-6H]
6-

. 

The observed mass for the odd oligosaccharides are fragmentation products of ESI-MS since 

digestion with HAase produces even-numbered oligosaccharides. However, these fragments 

were not observed in the control. Therefore, the oligosaccharides found in the degradation 

solutions may result from the fragmentation of even oligosaccharides originated from the 

enzymatic digestion. 

 

 

 

 

A 
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Figure S6. Negative ESI-MS of a 0.1% (w/v) hyaluronan solution (A) and of the supernatant 

after incubating the membranes in 50 U/mL HAase for 14 days (B).    

B 
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Morphology of hDFbs cultured on PA-HA membranes in serum-containing medium 

 

Figure S7. SEM micrographs of hDFbs cultured in K3-HA membranes. Cells were cultured on the 

PA side in medium containing 10% FBS up to 7 days. 
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CD44 

98.67± 0.60 

 

Analysis of the expression of CD44 receptor on hDFbs by flow cytomety 

The expression of CD44 receptor on the surface of hDFbs was assessed by flow cytomety. 

Briefly, harvested cells were incubated with fluorescent monoclonal antibody against CD44, 

(BD Biosciences Pharmingen, USA) for 20 minutes at room temperature. Cells were then 

washed in aquisition buffer (0.1% sodium azide, 1% formaldehyde, in phosphate-buffered 

saline solution). Unlabeled controls were included to evaluate unspecific binding. Samples 

were analyzed using a FACScalibur(Becton-Dickinson, USA) with CellQuest analysis software 

(BectonDickinson, USA). 

FACS analysis confirmed a high expression of CD44 (98.67%) on hDFbs. Similar values were 

reported in the literature for these cells
S3

.  

 

 

 

 

 

 

 

 

 

 

 

Figure S8 - Flow cytometry analysis of the expression of CD44 on the surface of hDFbs used in 

the cell culture studies. 
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hDFbs cultured on hyaluronan-based hydrogel film (non self-assembling material) 

To demonstrate the role of the self-assembled component, responsible for the nanofibrillar 

structure of the self-assembled membranes, on the morphology of adhered cells, hDFbs were 

cultured on the surface of a hyaluronan hydrogel film (non self-assembling film, control). For 

that, Corgel® BioHydrogel, a tyramine-substituted HA hydrogel (TS-NaHy 1.5% tyramine 

substitution, Part #85 Corgel® Kit 1%, Lifecore Biomedical, Inc, Chaska, USA) was prepared 

according with the supplier’s instructions and cells were cultured in serum-free conditions as 

described in Materials and Methods for the PA-HA membranes. The morphology of the cells 

was examined by SEM. Corgel® BioHydrogel is a patented hyaluronan hydrogel based on di-

hydroxyphenyl linkages of tyramine substituted sodium hyaluronate (NaHy)
S1

and was shown 

to be biocompatible
S1-S2

. SEM images show that the HA hydrogel films presents a smooth 

surface   (Figure S9-A) with few adherent cells with a small contact area to the surface (Figure 

S9-B). Furthermore, fibroblasts were completely round, without showing cell protusions 

(lamellipodia and filopodia) and did not flatten upon contact with the hydrogel surface. 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. SEM micrographs of TS-NaHy hydrogel surface (A) and morphology of hDFbs 

cultured on their surface in serum-free medium for 24 h. 
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