26 research outputs found

    NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria

    Get PDF
    Animal and human feces typically include intestinal sulfate-reducing bacteria (SRB). Hydrogen sulfide and acetate are the end products of their dissimilatory sulfate reduction and may create a synergistic effect. Here, we report NADH and NADPH peroxidase activities from intestinal SRB Desulfomicrobium orale and Desulfovibrio piger . We sought to compare enzymatic activities under the influence of various temperature and pH regimes, as well as to carry out kinetic analyses of enzymatic reaction rates, maximum amounts of the reaction product, reaction times, maximum rates of the enzyme reactions, and Michaelis constants in cell-free extracts of intestinal SRB, D. piger Vib-7, and D. orale Rod-9, collected from exponential and stationary growth phases. The optimal temperature (35 °C) and pH (7.0) for both enzyme’s activity were determined. The difference in trends of Michaelis constants ( K m ) during exponential and stationary phases are noticeable between D. piger Vib-7 and D. orale Rod-9; D. orale Rod-9 showed much higher K m (the exception is NADH peroxidase of D. piger Vib-7: 1.42 ± 0.11 mM) during the both monitored phases. Studies of the NADH and NADPH peroxidases—as putative antioxidant defense systems of intestinal SRB and detailed data on the kinetic properties of this enzyme, as expressed by the decomposition of hydrogen peroxide—could be important for clarifying evolutionary mechanisms of antioxidant defense systems, their etiological role in the process of dissimilatory sulfate reduction, and their possible role in the development of bowel diseases

    Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria

    Get PDF
    There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed

    Antiviral, antimicrobial and antibiofilm activity of selenoesters and selenoanhydrides

    Get PDF
    Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.

    Attitude, Familiarity and Religious Beliefs about Vaccination among Health Science and Non-Health Science Students in a Malaysian Public University

    Get PDF
    Abstract Vaccine hesitancy has surfaced globally within the last few decades, and the fears and misconceptions of people about vaccine safety and effectiveness have been identified as key factors for their under-utilization. The familiarity, attitudes, and religious beliefs of the public and of future healthcare practitioners regarding vaccination are extensive areas needing exploration. The present exploratory cross-sectional study was designed, planned and carried out on students enrolled in health science and non-health science courses in one of the public universities of Malaysia. A research instrument that had been formulated, validated and subjected to reliability testing was used to collect the data, which were analyzed using descriptive and inferential statistics. A response rate of 80.8% (n = 202) was obtained: the majority were female (n = 161, 79.7%), and had been vaccinated before (n = 190, 97.5%), while a mere 2% did not support vaccination for reasons pertaining to safety issues. The vaccine familiarity score was 10.79 ± 1.4, which significantly differed among the study disciplines (p < 0.001). The mean of the total attitude score was 14.95 ± 1.5, with no significant difference among demographics being noted. The mean of the total religious beliefs score was 24.29 ± 2.8 and significantly differed based on gender (p = 0.040) and study disciplines (p < 0.001). The current findings showed that the participants were familiar with vaccines and had generally positive attitudes and positive religious beliefs toward vaccination; thus, one can expect that their inclusion in immunization campaigns will generate positive outcomes of the immunization program. Although the current research reported few knowledge gaps, these may be handled with the introduction of a specialized immunization course at an undergraduate level

    Phenothiazines and selenocompounds: A potential novel combination therapy of multidrug resistant cancer

    No full text
    Background/Aim: Phenothiazines constitute a versatile family of compounds in terms of biological activity, which have also gained a considerable attention in cancer research. Materials and Methods: Three phenothiazines (promethazine, chlorpromazine and thioridazine) have been tested in combination with 11 active selenocompounds against MDR (ABCB1-overexpressing) mouse T-lymphoma cells to investigate their activity as combination chemotherapy and as antitumor adjuvants in vitro with a checkerboard combination assay. Results: Seven selenocompounds showed toxicity on mouse embryonic fibroblasts, while three showed selectivity towards tumor cells. Two compounds showed synergism with all tested phenothiazines in low concentration ranges (1.46-11.25 μM). Thioridazine was the most potent among the three phenothiazines. Conclusion: Phenothiazines belonging to different generations showed different levels of adjuvant activities. All the tested phenothiazines are already approved medicines with known pharmacological and toxicity profiles

    NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria

    No full text
    Abstract Animal and human feces typically include intestinal sulfate-reducing bacteria (SRB). Hydrogen sulfide and acetate are the end products of their dissimilatory sulfate reduction and may create a synergistic effect. Here, we report NADH and NADPH peroxidase activities from intestinal SRB Desulfomicrobium orale and Desulfovibrio piger. We sought to compare enzymatic activities under the influence of various temperature and pH regimes, as well as to carry out kinetic analyses of enzymatic reaction rates, maximum amounts of the reaction product, reaction times, maximum rates of the enzyme reactions, and Michaelis constants in cell-free extracts of intestinal SRB, D. piger Vib-7, and D. orale Rod-9, collected from exponential and stationary growth phases. The optimal temperature (35 °C) and pH (7.0) for both enzyme’s activity were determined. The difference in trends of Michaelis constants (K m) during exponential and stationary phases are noticeable between D. piger Vib-7 and D. orale Rod-9; D. orale Rod-9 showed much higher K m (the exception is NADH peroxidase of D. piger Vib-7: 1.42 ± 0.11 mM) during the both monitored phases. Studies of the NADH and NADPH peroxidases—as putative antioxidant defense systems of intestinal SRB and detailed data on the kinetic properties of this enzyme, as expressed by the decomposition of hydrogen peroxide—could be important for clarifying evolutionary mechanisms of antioxidant defense systems, their etiological role in the process of dissimilatory sulfate reduction, and their possible role in the development of bowel diseases

    In Vitro Evaluation of the Multidrug Resistance Reversing Activity of Novel Imidazo[4,5-b]pyridine Derivatives

    No full text
    BACKGROUND/AIM: Malignant diseases present a significant public health burden worldwide and their treatment is further complicated by the phenomenon of multidrug resistance. Derivatives of imidazopyridine exhibit several remarkable pharmacological activities and they could reverse the multidrug resistance of cancer cells due to overexpressing P-glycoprotein. MATERIALS AND METHODS: A series of novel imidazo[4,5-b]pyridine derivatives were synthesized and their biological activities were evaluated in vitro using parental (PAR) and multidrug resistant (MDR; ABCB1-overexpressing) mouse T-lymphoma cells. The cytotoxic activity and selectivity of the tested compounds were assessed by the thiazolyl blue tetrazolium bromide (MTT) assay, the ABCB1 modulating activity was measured by rhodamine 123 accumulation assay using flow cytometry. RESULTS: Six compounds (b, c, d, f, h and i) showed moderate-to-high cytotoxic activity on the tested cell lines, while derivative i presented with promising selectivity towards the MDR cell line. Derivatives a, d, f, g and i were proven to be effective modulators of the ABCB1 multidrug efflux pump, with two compounds showing efflux pump modulatory activity at 2 muM concentration. CONCLUSION: Based on our experimental results, compounds that showed potent activity are those with a short carbon side chain; a methoxy group on the benzene ring; a heterocyclic (triazole) side chain and the presence of an alkylated N-atom at position 4

    Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study

    No full text
    Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition – focusing on sulfate-reducing bacteria (SRB) – in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients’ disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases
    corecore