8 research outputs found

    Effect of self-healing additions on the development of mechanical strength of cement paste

    Get PDF
    Important research efforts have been recently focused on the development of self-healing cement composites. The healing mechanism, implemented within the material, must be automatically initiated as soon as the first signs of damage appear at the micro-scale. For doing so, two different additions have been developed to incorporate them simultaneously into the cementitious matrix: silica microcapsules containing an epoxy sealing compound (CAP) and nanosilica particles functionalized with amine groups (NS). As a first step to the development of a self-healing concrete with these two additions, their pozzolanic activity has been measured by an accelerated test. The high values of fixed lime obtained at 28 days (85% for CAP, 93% for NS and 88% for a mix of them) suggest that they are suitable for construction materials’ applications. Furthermore, the behaviour of the additions in an ordinary Portland cement paste with 20 wt.% of commercial micro-silica has been studied, considering the partial substitution of micro-silica by CAP, NS and their mix. High values of compressive strength (>60 MPa) have been obtained in all cases after 28 days of hydration. However, while the addition of CAP induces a reduction of the compressive strength of the 24% with respect to the reference material, the addition of NS gives rise to a slight enhancement of the strength (5%) due to a pozzolanic reaction confirmed by X-ray diffraction data. Finally, in the presence of both CAP and NS, the beneficial effect of the nanosilica is counteracted by the microcapsules and a reduction of 28% is obtained for the compressive strength

    Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength

    Full text link
    Mineralogical analysis on pastes of Spanish Portland cement Type I, blended with nanosilica was carried out by conventional and high-resolution thermogravimetric analysis (TG-HRTG) and X-ray diffraction (XRD) in order to determine the quantity of the different mineralogical phases obtained during the hydration process. Simultaneously, mortars with the same materials and replacement ratio were made in order to assess their compressive strength for up to 28 days of curing time. In this paper, the rate and quantity of each one of the main constituent phases of the cement during its hydration process (CSH, portlandite, stratlingite, etc.) were determined. A correlation between the quantity of CSH and the development of compressive strength was established. Additionally, the pozzolanic activity of nanosilica was evaluated by quantifying the fixation of calcium hydroxide and its impact on the development of the compressive strength. © 2012 Elsevier Ltd. All rights reserved.The authors express their thanks to Cementos Argos S.A. and to COLCIENCIAS (Project 20201007768) of Colombia for their financial support in the execution of this research.Tobón, JI.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Restrepo Baena, OJ. (2012). Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Construction and Building Materials. 36:736-742. https://doi.org/10.1016/j.conbuildmat.2012.06.043S7367423

    Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive

    No full text
    Two innovative additions are considered for the development of self-healing concrete: epoxy-containing silica microcapsules and amine-functionalized nanosilica. The effect of two concentrations of the additions on the microstructure of a cement paste with silica fume is studied. The results indicate a proper dispersion of the additions within the matrix, a pozzolanic reaction induced by nanosilica and the stability of the microcapsules that reliably isolate the epoxy from the paste. As the concentration of additions increases, a preferential orientation of the portlandite phase is observed, together with a decrease of the compressive strength due to the presence of a minor content of macropores and to the low strength of the capsules. The self-healing efficiency is confirmed in concrete specimens for 150 gm wide cracks and a particular concentration of the additions. These results will be essential for the subsequent development of a reliable self-healing concrete based in the epoxy-amine adhesive

    Effect of Chemical Environment on the Dynamics of Water Confined in Calcium Silicate Minerals: Natural and Synthetic Tobermorite

    No full text
    Confined water in the slit mesopores of the mineral tobermorite provides an excellent model system for analyzing the dynamic properties of water confined in cement-like materials. In this work, we use broadband dielectric spectroscopy (BDS) to analyze the dynamic of water entrapped in this crystalline material. Two samples, one natural and one synthetic, were analyzed, and despite their similar structure, the motion of confined water in their zeolitic cavity displays considerably different behavior. The water dynamics splits into two different behaviors depending on the chemical nature of the otherwise identical structural environment: water molecules located in areas where the primary building units are SiO4 relax slowly compared to water molecules located in cavities built with both AlO4 and SiO4. Compared to water confined in regular porous systems, water restricted in tobermorite is slower, indicating that the mesopore structure induces high disorder in the water structure. A comparison with water confined in the C-S-H gel is also discussed in this work. The strong dynamical changes in water due to the presence of aluminum might have important implications in the chemical transport of ions within hydrated calcium silicates, a process that governs the leaching and chemical degradation of cement.Basque government through the Nanoiker Project under the ETORTEK Program (IE14-393), Spanish Ministry of Education (MAT2012-31088), Spanish Ministerio de Industria y Competitividad (Juan de la Cierva

    Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete

    No full text
    Silica microcapsules encapsulating an epoxy compound (CAP) and silica nanoparticles functionalized by an amine group (NS) are synthesized to be used as self-healing system for smart cementitious composites. The innovative character of this system comes from the use of silica shell microcapsules to improve the durability and compatibility with the cement and from the use of functionalized nanosilica to obtain an amine functionalized cementitious matrix. Characterization of the particles indicates that they are amorphous and possess a proper morphology and size to be considered as additions to cement. The stability of the epoxy compound inside the microcapsules and the presence of amine groups bonded to silica nanoparticles are also confirmed. Moreover, NS shows a pozzolanic activity superior to that of the silica fume used as reference, while CAP is to a high degree stable upon reaction with lime. The results confirm that the synthesized particles are a suitable starting point to address the development of a smart self-healing concrete

    Supercritical hydrothermal flow synthesis of xonotlite nanofibers

    No full text
    This article reports a satisfactory and innovative method for the synthesis of xonotlite using a flow reactor and supercritical water. This study widens the variety of inorganic nanofibers produced in record breaking times by means of continuous reactors working under supercritical water conditions. In particular, the synthesis time of xonotlite, which takes normally more than 5 h, was reduced to only 20s by carrying out the reaction at 400 °C and 23.5 MPa. Resulting product was studied by several characterization techniques: x-ray diffraction, transmission electron microscopy, 29Si and 1H nuclear magnetic resonance and infrared spectroscopy. Furthermore, obtained product consisted of highly pure and crystalline flat nanofibers of 1–10 μm long with a length to diameter ratio of the order of 100. Also, the typical deviation from the ideal structure observed by nuclear magnetic resonance and the presence of Si-OH were explained in terms of surface defects. This work reinforces the interests of using supercritical conditions for the fast synthesis of crystalline nano-calcium silicates which, due to the number of potential industrial applications and the scalability of the technology, might represent technological breakthrough.This study was carried out under the umbrella of the BASKRETE initiative and supported by the Basque Government under the ELKARTEK Program (project SUPER). In addition, Marta Diez is grateful to the University of the Basque Country (UPV/EHU) and the University of Bordeaux for her pre-doctoral fellowship, within the framework of the Cross-Border Euroregional Campus of International Excellence IDEX Bordeaux–Euskampus

    Development of ultra-high performance concretes with self-healing micro/nano-additions

    No full text
    UHPC are developed in present paper incorporating an innovative self-healing system based on two micro/nano-additions: silica microcapsules containing epoxy sealing compound (CAP) and amine functionalised silica nanoparticles. Although CAP are well integrated within the cementitious matrix, their inclusion promotes a reduction in the mechanical performance so CAP could act as weak points. However, the inclusion of these additions refines pore distribution thus increasing the expected durability in aggressive media. An effective autonomous self-healing capacity is assessed/confirmed which is unexpectedly higher in the concretes with the lower healing additions content studied. This capacity depends on the crack width and the healing period considered.BIA2011-29234-C02-01 Project, funded by the Spanish Government (Ministerio de Economía y Competitividad) Basque Government through the PI2012-23 Project and Nanoiker Project (Grant No. E11-304) within the Etortek programme and under the umbrella of the Baskrete initiative

    Computational 3D simulation of calcium leaching in cement matrices

    No full text
    Calcium leaching is a degradation process consisting in the progressive dissolution of the paste by the migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving simultaneously several crystalline phases and dissolution and diffusion processes. During this work a new program for the simulation of the degradation process in three dimensions was developed. The program decouples the transport and chemical reaction equations and solves them separately. Transport equations are solved by the Finite Element Method using an algorithm that enables the description of multi-ionic solutions on arbitrary domains. The chemical algorithm accounts for the degradation of portlandite and the CSH gel which are the main constituents of ordinary Portland cement matrices. The program was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution, in order to test it. The obtained output was a three dimensional representation of the matrix and the values calcium concentration of each particular pixel of the structure at different time steps. This not only makes possible to study the calcium to silicon ratio, porosity and elastic properties of each particular phase as a function of time but also as a function of the position within the matrix.Structural EngineeringCivil Engineering and Geoscience
    corecore