376 research outputs found
A Divided Community: The Effects of State Fiscal Crises on Nonprofits Providing Health and Social Assistance
This paper examines the current state revenue crisis, demand for social services, the distribution of social assistance nonprofits, and both long-run and short-run changes in state expenditures to estimate the effects of state fiscal crises on the nonprofit sector associated with human service programs. This study finds divisions among nonprofits that affect the severity of these effects.
The Affordable Care Acts 1332 Waiver: An Avenue for Short-run Adjustment, Innovative Change, or Political Acceptance?
Although the Congress repeatedly failed to repeal and replace the Affordable Care Act (ACA) in 2017, ACA policies have changed extensively over the past year. December's tax bill eliminated the financial penalties enforcing the individual mandate, starting in 2019. The Trump administration used its executive powers to slash ACA advertising spending and shrink the ACA enrollment period, and it ceased making cost-sharing reduction payments to insurers. These changes did not appear to have a big impact on ACA's 2018 enrollments, which were only slightly below the previous year's total, but there has been a decline in the number of participating insurers, and premiums increased in many rating areas.It is still too early to know the longer-term effects of these changes, much less anticipate future developments. They do, however, suggest that states are implementing the ACA in a dynamic, uncertain environment even after the act escaped wholesale replacement. To deal with these and future changes, or to modify policies that would make state ACA programs more effective, or more to their political liking, state governments may turn to the ACA's Section 1332 State Innovation Waivers. The 1332 waivers are not the only way in which states can modify ACA policies, and their role has been limited to date. But the waivers have potential as a means for widespread policy change, and that potential may grow. As of this writing, there are bipartisan proposals in the Congress to expand the authority under the ACA's section 1332 provision to foster even more state innovation.This paper discusses the 1332 waiver — its origins, powers and limitations, and uses thus far — and how it may be used to address major challenges facing the ACA. We note, for example, a shift in the purposes of planned 1332 applications before and after the 2016 elections, a shift that suggests a new and challenging function for waivers — not simply to allow states to adopt different pathways to common policy goals, but to respond effectively and quickly to rapid changes in healthcare markets. We discuss the practicality and implications of this shift along with ways in which 1332 waivers may be used to serve other purposes, including how they may be used in combination with other waivers and instruments to bring about comprehensive reforms in the delivery of healthcare. We also discuss the prospects for 1332 waivers in the coming years, their potential roles in adapting the ACA to changing and diverse circumstances, and ways in which the waiver process may be improved
Sleep-effects on implicit and explicit memory in repeated visual search
In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially
A cross-syndrome study of the differential effects of sleep on declarative memory consolidation in children with neurodevelopmental disorders
Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep-dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first study to provide a cross-syndrome comparison of sleep-dependent learning in school-aged children. Children with DS (n = 20) and WS (n = 22) and TD children (n = 33) were trained on the novel Animal Names task where they were taught pseudo-words as the personal names of ten farm and domestic animals, e.g. Basco the cat, with the aid of animal picture flashcards. They were retested following counterbalanced retention intervals of wake and sleep. Overall, TD children remembered significantly more words than both the DS and WS groups. In addition, their performance improved following night-time sleep, whereas performance over the wake retention interval remained stable, indicating an active role of sleep for memory consolidation. Task performance of children with DS did not significantly change following wake or sleep periods. However, children with DS who were initially trained in the morning continued to improve on the task at the following retests, so that performance on the final test was greater for children who had initially trained in the morning than those who trained in the evening. Children with WS improved on the task between training and the first retest, regardless of whether sleep or wake occurred during the retention interval. This suggests time-dependent rather than sleep-dependent learning in children with WS, or tiredness at the end of the first session and better performance once refreshed at the start of the second session, irrespective of the time of day. Contrary to expectations, sleep-dependent learning was not related to baseline level of performance. The findings have significant implications for educational strategies, and suggest that children with DS should be taught more important or difficult information in the morning when they are better able to learn, whilst children with WS should be allowed a time delay between learning phases to allow for time-dependent memory consolidation, and frequent breaks from learning so that they are refreshed and able to perform at their best
Sleep Enforces the Temporal Order in Memory
BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C) in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively) or in a backward direction (cueing with C and B and asking for B and A, respectively). Memory was better for forward than backward associations (p<0.01). Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB) transitions (p<0.01), which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in the trace of an episodic memory
Training face perception in developmental prosopagnosia through perceptual learning
Background: Recent work has shown that perceptual learning can improve face discrimination in subjects with acquired prosopagnosia. Objective: In this study, we administered the same program to determine if such training would improve face perception in developmental prosopagnosia.Method: We trained ten subjects with developmental prosopagnosia for several months with a program that required shape discrimination between morphed facial images, using a staircase procedure to keep training near each subject’s perceptual threshold. To promote ecological validity, training progressed from blocks of neutral faces in frontal view through increasing variations in view and expression. Five subjects did 11 weeks of a control television task before training, and the other five were re-assessed for maintenance of benefit 3 months after training. Results: Perceptual sensitivity for faces improved after training but did not improve after the control task. Improvement generalized to untrained expressions and views of these faces, and there was some evidence of transfer to new faces. Benefits were maintained over three months. Training also led to improvements on standard neuropsychological tests of short-term familiarity, and some subjects reported positive effects in daily life.Conclusion: We conclude that perceptual learning can lead to persistent improvements in face discrimination in developmental prosopagnosia. The strong generalization suggests that learning is occurring at the level of three-dimensional representations with some invariance for the dynamic effects of expression
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15 ∶ 00 UTC and 1 October 2019 15 ∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥ 3 M⊙ ) is increased compared to GWTC-2, with total masses from ∼ 14 M ⊙ for GW190924_021846 to ∼ 182 M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe
- …