21 research outputs found

    Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus

    Get PDF
    Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies

    Host-range shift of H3N8 canine influenza virus: a phylodynamic analysis of its origin and adaptation from equine to canine host

    Get PDF
    International audiencePrior to the emergence of H3N8 canine influenza virus (CIV) and the latest avian-origin H3N2 CIV, there was no evidence of a circulating canine-specific influenza virus. Molecular and epidemiological evidence suggest that H3N8 CIV emerged from H3N8 equine influenza virus (EIV). This host-range shift of EIV from equine to canine hosts and its subsequent establishment as an enzootic CIV is unique because this host-range shift was from one mammalian host to another. To further understand this host-range shift, we conducted a comprehensive phylodynamic analysis using all the available whole-genome sequences of H3N8 CIV. We found that (1) the emergence of H3N8 CIV from H3N8 EIV occurred in approximately 2002; (2) this interspecies transmission was by a reassortant virus of the circulating Florida-1 clade H3N8 EIV; (3) once in the canine species, H3N8 CIV spread efficiently and remained an enzootic virus; (4) H3N8 CIV evolved and diverged into multiple clades or sublineages, with intra and inter-lineage reassortment. Our results provide a framework to understand the molecular basis of host-range shifts of influenza viruses and that dogs are potential “mixing vessels” for the establishment of novel influenza viruses

    A shift in Porcine circovirus 3 (PCV‐3) history paradigm: Phylodynamic analyses reveal an ancient origin and prolonged undetected circulation in the worldwide swine population

    Get PDF
    The identification of a new circovirus (Porcine circovirus 3, PCV-3) has raised a remarkable concern because of some analogies with Porcine circovirus 2 (PCV-2). Preliminary results suggest an extremely recent PCV-3 emergence and high mutation rate. Retrospective studies prove its circulation at least since the early 1990s, revealing that PCV-3 could have been infecting pigs for an even longer period. Therefore, a new evaluation, based on an updated collection of PCV-3 sequences spanning more than 20 years, is performed using a phylodynamic approach. The obtained results overrule the previous PCV-3 history concept, indicating an ancient origin. These evidences are associated with an evolutionary rate far lower (10 −5 –10 −6 substitution/site/ year) than the PCV-2 one. Accordingly, the action of selective pressures on PCV-3 open reading frames (ORFs) seems to be remarkably lower compared to those acting on PCV-2, suggesting either a reduced PCV-3 plasticity or a less efficient host-induced natural selection. A complex and not-directional viral flow network is evidenced through phylogeographic analysis, indicating a long lasting circulation rather than a recent emergence followed by spreading. Being recent emergence has been ruled out, efforts should be devoted to understand whether its recent discovery is simply due to improved detection capabilities or to the breaking of a previous equilibrium.info:eu-repo/semantics/publishedVersio

    Evolutionary and genetic analysis of the VP2 gene of canine parvovirus

    No full text
    Abstract Background Canine parvovirus (CPV) type 2 emerged in 1978 in the USA and quickly spread among dog populations all over the world with high morbidity. Although CPV is a DNA virus, its genomic substitution rate is similar to some RNA viruses. Therefore, it is important to trace the evolution of CPV to monitor the appearance of mutations that might affect vaccine effectiveness. Results Our analysis shows that the VP2 genes of CPV isolated from 1979 to 2016 are divided into six groups: GI, GII, GIII, GIV, GV, and GVI. Amino acid mutation analysis revealed several undiscovered important mutation sites: F267Y, Y324I, and T440A. Of note, the evolutionary rate of the CPV VP2 gene from Asia and Europe decreased. Codon usage analysis showed that the VP2 gene of CPV exhibits high bias with an ENC ranging from 34.93 to 36.7. Furthermore, we demonstrate that natural selection plays a major role compared to mutation pressure driving CPV evolution. Conclusions There are few studies on the codon usage of CPV. Here, we comprehensively studied the genetic evolution, codon usage pattern, and evolutionary characterization of the VP2 gene of CPV. The novel findings revealing the evolutionary process of CPV will greatly serve future CPV research

    Insights into the genetic and host adaptability of emerging porcine circovirus 3

    No full text
    Porcine circovirus 3 (PCV3) was found to be associated with reproductive disease in pigs, and since its first identification in the United States, it subsequently spread worldwide, especially in China, where it might pose a potential threat to the porcine industry. However, no exhaustive analysis was performed to understand its evolution in the prospect of codon usage pattern. Here, we performed a deep codon usage analysis of PCV3. PCV3 sequences were classified into two clades: PCV3a and PCV3b, confirmed by principal component analysis. Additionally, the degree of codon usage bias of PCV3 was slightly low as inferred from the analysis of the effective number of codons. The codon usage pattern was mainly affected by natural selection, but there was a co-effect of mutation pressure and dinucleotide frequency. Moreover, based on similarity index analysis, codon adaptation index analysis and relative codon deoptimization index analysis, we found that PCV3 might pose a potential risk to public health though with unknow pathogenicity. In conclusion, this work reinforces the systematic understanding of the evolution of PCV3, which was reflected by the codon usage patterns and fitness of this novel emergent virus

    Genetic Analysis and Evolutionary Changes of Porcine Circovirus 2

    No full text
    Porcine circovirus 2 (PCV2) has been increasingly isolated worldwide and represents one of the main causes of economic losses in the swine industry. During evolution, PCV2 has diverged into different genotypes and several recombinant strains have been identified. In this study, we performed thorough genetic, evolutionary and codon usage analyses using 1065 non-recombinant open reading frame 2 (ORF2) sequences from NCBI. Based on ML and Bayesian methods of the ORF2 gene, five main genotypes were defined including, PCV2a, PCV2b, PCV2c, PCV2d and PCV2e. The different genotypes displayed a variable degree of codon usage bias, mainly influenced by natural selection. Moreover, the host adaptation of these PCV2 genotypes to different hosts was analyzed for the first time showing that PCV2 is more adapted to swine than bats. Swine was especially relevant in shaping the PCV2b and PCV2d genomes according the Codon adaptation index (CAI) and Similarity index (SiD). When a broader range of circoviruses was considered, a certain incongruence between the phylogenetic history of these viruses and that of their hosts was observed, suggesting that cross-species transmission has played a major role during circoviruses evolution. Our study provides a new perspective of the evolution of Porcine circoviruses and may serve to aid future research on PCV2 origin and evolution patterns

    Evolutionary changes of the novel Influenza D virus hemagglutinin-esterase fusion gene revealed by the codon usage pattern

    No full text
    The codon usage pattern can reveal the adaptive changes that allow virus survival and fitness adaptation to their particular host, as well as the external environment. Although still considered a novel influenza virus, there is an increasing number of influenza D viruses (IDVs) reported. Considering the vital role of the hemagglutinin-esterase fusion (HEF) gene in receptor binding, receptor degradation, and membrane fusion, we investigated the codon usage pattern of the IDV HEF gene to better understand its adaptive changes during evolution. Based on the HEF gene, three groups including, D/OK, D/660, and D/Japan were identified. We found a low codon usage bias, which allowed IDV to replicate in the corresponding hosts by reducing competition during evolution, that was mainly driven by natural selection and mutation pressure, with a profound role of natural selection. Furthermore, the interaction between the codon adaption index (CAI) and the relative codon deoptimization index (RCDI) revealed the adaption of IDV to multiple hosts, especially cattle which is currently considered its reservoir. Additionally, similarity index (SiD) analysis revealed that the swine exerted a stronger evolutionary pressure on IDV than cattle, though cattle is considered the primary reservoir. In addition, the conserved PB1 gene showed a similar pattern of codon usage compared to HEF. Therefore, we hypothesized that IDV has a preference to maintain infection in multiple hosts. The study aids the understanding of the evolutionary changes of IDV, which could assist this novel virus prevention and control

    Genetic Evolution and Molecular Selection of the <em>HE</em> Gene of Influenza C Virus

    No full text
    Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies

    Additional file 1: of Evolutionary and genetic analysis of the VP2 gene of canine parvovirus

    No full text
    Table S1. The detail numbers of the three discovered mutation sites of the 424 sequences. Table S2. The nucleotide contents of the selected sequences and the mean ± SD values of the A%,T%,G%,C%,respectively. Table S3. The correlation analysis of codon usage indices. *Signifies 0.05 > p > 0.01; **signifies p < 0.01. Table S4. The abundance of the 16 dinucleotides. Table S5. The detail information of the 424 sequences. (DOCX 96 kb

    Additional file 1: of Evolutionary and genetic analysis of the VP2 gene of canine parvovirus

    No full text
    Table S1. The detail numbers of the three discovered mutation sites of the 424 sequences. Table S2. The nucleotide contents of the selected sequences and the mean ± SD values of the A%,T%,G%,C%,respectively. Table S3. The correlation analysis of codon usage indices. *Signifies 0.05 > p > 0.01; **signifies p < 0.01. Table S4. The abundance of the 16 dinucleotides. Table S5. The detail information of the 424 sequences. (DOCX 96 kb
    corecore