235 research outputs found
Observational constraints on an inflation model with a running mass
We explore a model of inflation where the inflaton mass-squared is generated
at a high scale by gravity-mediated soft supersymmetry breaking, and runs at
lower scales to the small value required for slow-roll inflation. The running
is supposed to come from the coupling of the inflaton to a non-Abelian gauge
field. In contrast with earlier work, we do not constrain the magnitude of the
supersymmetry breaking scale, and we find that the model might work even if
squark and slepton masses come from gauge-mediated supersymmetry breaking. With
the inflaton and gaugino masses in the expected range, and
in the range to (all at the high scale) the model can give
the observed cosmic microwave anisotropy, and a spectral index in the observed
range. The latter has significant variation with scale, which can confirm or
rule out the model in the forseeable future.Comment: Latex, 19 pages, 14 figures, uses epsf.st
On Darboux-Treibich-Verdier potentials
It is shown that the four-parameter family of elliptic functions
introduced
by Darboux and rediscovered a hundred years later by Treibich and Verdier, is
the most general meromorphic family containing infinitely many finite-gap
potentials.Comment: 8 page
Particle physics models of inflation
Inflation models are compared with observation on the assumption that the
curvature perturbation is generated from the vacuum fluctuation of the inflaton
field. The focus is on single-field models with canonical kinetic terms,
classified as small- medium- and large-field according to the variation of the
inflaton field while cosmological scales leave the horizon. Small-field models
are constructed according to the usual paradigm for beyond Standard Model
physicsComment: Based on a talk given at the 22nd IAP Colloquium, ``Inflation +25'',
Paris, June 2006 Curve omitted from final Figur
Curvatons in Supersymmetric Models
We study the curvaton scenario in supersymmetric framework paying particular
attention to the fact that scalar fields are inevitably complex in
supersymmetric theories. If there are more than one scalar fields associated
with the curvaton mechanism, isocurvature (entropy) fluctuations between those
fields in general arise, which may significantly affect the properties of the
cosmic density fluctuations. We examine several candidates for the curvaton in
the supersymmetric framework, such as moduli fields, Affleck-Dine field, -
and -flat directions, and right-handed sneutrino. We estimate how the
isocurvature fluctuations generated in each case affect the cosmic microwave
background angular power spectrum. With the use of the recent observational
result of the WMAP, stringent constraints on the models are derived and, in
particular, it is seen that large fraction of the parameter space is excluded
if the Affleck-Dine field plays the role of the curvaton field. Natural and
well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at GeV
We report the first measurement of the opening angle distribution between
pairs of jets produced in high-energy collisions of transversely polarized
protons. The measurement probes (Sivers) correlations between the transverse
spin orientation of a proton and the transverse momentum directions of its
partons. With both beams polarized, the wide pseudorapidity () coverage for jets permits separation of Sivers functions for the valence
and sea regions. The resulting asymmetries are all consistent with zero and
considerably smaller than Sivers effects observed in semi-inclusive deep
inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the
new results with the sizable transverse spin effects seen in SIDIS and forward
hadron production in pp collisions.Comment: 6 pages total, 1 Latex file, 3 PS files with figure
- …