1,750 research outputs found

    Exportation saisonnière d'herbicides vers les cours d'eau mesurée sur six champs agricoles sous quelques pratiques culturales du maïs (Basses-Terres du St-Laurent)

    Get PDF
    L'identification de pratiques agricoles qui minimisent les risques de contamination des eaux de surface nécessite d'évaluer l'importance des voies de transfert des herbicides vers les cours d'eau. Le but de cette étude est d'évaluer à l'échelle du champ agricole et pour une saison de culture l'exportation effective de l'atrazine et du métolachlore par ruissellement de surface et par drainage, ceci pour des conditions pédo-climatiques et agronomiques représentatives de la culture intensive du maïs-grain dans les Basses-Terres du St-Laurent (Québec). Pour les deux premiers événements pluviaux d'importance suivant l'application des herbicides, seulement deux des six champs étudiés ont présenté un ruissellement quittant le champ : les concentrations en herbicides ont atteint 1200 mg/L et 2400 mg/L. La charge exportée en herbicides semble inférieure dans le cas du non travail du sol (semis direct), comparativement au labour conventionnel. Les concentrations en herbicides dans l'eau de drainage sont inférieures à 6 mg/L (pour la majorité inférieures à 1-2mg/L) pour quatre champs, alors que deux champs ont présenté des concentrations atteignant 40-60 mg/L. La charge exportée par drainage apparaît être faible dans le cas de l'application d'herbicides en bandes, comparativement à l'application en surface totale. La masse en herbicides exportée par ruissellement (estimée à partir de coefficients de ruissellement probables) serait supérieure à celle par drainage. Une démarche destinée à diminuer les masses en herbicides exportées devrait ainsi viser la principale voie de cette exportation, c'est-à-dire le ruissellement de surface.The use of pesticides in agriculture may result in the degradation of surface water quality. Since agricultural practices affect the transport of pesticides, there is a need to identify practices which minimize the contribution of the different transport paths to the streams, i.e. runoff and drainage. The aim of this study was to evaluate at the field scale and for one growing season the transport of the herbicides atrazine and metolachlor to surface water under soil, climatic and agricultural conditions representative of those encountered for intensive corn cropping in the St-Lawrence Lowlands (Quebec).Six agricultural fields (Figure 1) were studied in 1995. Previous agricultural practices in 1994 and soil texture are summarized in Tables 1 and 2, respectively. Conventional practices (tillage with moldboard plow and application of herbicides over the entire area of the field) and conservation practices (no-till and banded application of herbicides over the seeded row) were studied. Each field was solely and entirely drained by one subsurface drain. The commercial formulation used in 1995 contained a mass of metolachlor two times higher than that for atrazine. Herbicide concentrations in runoff and drainage waters were monitored during the two first important rainfall events that occurred after herbicide application (Table 3). Sampled runoff corresponded to the water reaching a drainage channel or a stream. Drainage water was also collected for 3.5 - 4.5 months following the initial application. A total of 164 water samples was obtained. After sediment removal, metolachlor, atrazine and its dealkylated metabolite deethylatrazine (DEA) were extracted using a liquid-solid extraction procedure and analyzed by gas chromatography.Only two fields produced runoff and the concentrations of parent-compounds (Figures 2 and 3) were high and varied during rainfall events between 60-500 mg/L (Field 2) or 130-2400 mg/L (Field 6). Concentrations found during the first rainfall event were higher than those encountered during the second event. The DEA/atrazine concentration ratio (DAR) was below or near 0.1, indicating runoff of recently applied atrazine (low degradation). These two fields present similar soil texture, pluviometry and sampling periods after herbicide application. Based on runoff coefficients observed for other agricultural fields (1-30%), it was estimated that the mass losses for herbicides (Table 4) would be higher under conventional tillage(Field 6) as compared to no-till (Field 2).Significant transport of herbicides by drainage was observed during the two rainfall events. The losses of herbicides that occurred after these events and during a dry growing season (little or no drainage flow) were low. The drainage losses (concentration or masses) during the two rainfall events for Field 1 (clay) were very low. This was attributed to the low drainage capacity of the soil, to the low rainfall intensities as well as to the important delay between the initial application and the subsequent rainfalls. For silty clay loam to loam soils, the drainage flow increased in the 6-12 h period following the onset of rainfall, as did the herbicide concentrations. Metolachlor concentrations were slightly higher or close to those for atrazine: this was attributed to its possible more rapid decay and to its stronger tendency to adsorb to the soil.During the rainfall events, four fields exhibited herbicide concentrations from drainage less than 6 mg/L (mostly < 1-2 mg/L). Fields 2 and 6 yielded parent-compound concentrations as high as 40-60 mg/L (Figures 4 and 5). The DAR values found for drainage water of Field 2 (0.1-0.5) were higher than those observed from runoff, indicating significant dealkylation of atrazine had occurred during its transport in the unsaturated zone. Field 6 allowed the monitoring of the DAR over the growing season and an inverse relationship was found between the DAR and atrazine concentration (Figure 6). This was attributed to the larger variation in atrazine concentration during a rainfall as compared to that of DEA. A DAR value near 1 was obtained at 1-2 months after application, indicating important degradation of atrazine.The total mass losses of parent-compounds (two rainfall events) were evaluated (Table 5) except for Fields 2 and 4 which present frequent submerged drains. Banded herbicide application (Field 5) results in consistent lower losses of herbicide masses than those obtained for application over the entire surface (e.g. Field 5 compared to Fields3 and 6). It should be noted that the higher export observed for the entire surface application may be partly attributed to a shorter delay between application and rainfalls (Fields 3 and 6) or to a higher rainfall intensity (Field 6).Although runoff reaching surface waters was limited, it was estimated that the total herbicide losses (Table 4) during the two rainfall events were higher than those from drainage (Table 5). In the perspective of reducing the herbicide loads reaching streams, it appears that remedial actions should focus on this main route of transport. Thus, complementary actions such as vegetated buffer strips to intercept crop land runoff may possibly be useful to limit herbicide transfer to streams in intensive agricultural zones

    Changes in Metallothionein Levels in Freshwater Mussels Exposed to Urban Wastewaters: Effects from Exposure to Heavy Metals?

    Get PDF
    Municipal effluents are complex mixtures of compounds such as heavy metals, aromatic and aliphatic hydrocarbons, and micro-organisms and are released in aquatic ecosystems. The purpose of this study was to verify whether changes in metallothioneins (MT) were associated with the accumulation of labile metals in tissue of freshwater mussels exposed to the dispersion plume of a major municipal effluent. Mussels were placed in experimental cages deployed at sites 1.5 km upstream, 8 km downstream and 12 km downstream of the outfall of a major, primary-treated municipal effluent in the St. Lawrence River (Québec, Canada). Mussels were analysed for MT and labile zinc levels in their gonads, gills and digestive glands. Lipogenic enzyme (isocitrate and glucose-6-phosphate dehydrogenase) and arachidonic acid cyclooxygenase (COX) activities were also measured in gonad and gill tissues. Although MT was induced in all the tissues examined, the results showed that labile zinc levels were significantly reduced in gill and gonad tissues, with an increase observed only at the 12 km downstream site in the digestive gland. COX activity was readily induced in gills and gonads. Glucose-6-phosphate dehydrogenase activity was reduced at both downstream sites, but isocitrate dehydrogenase activity was significantly induced at the farthest (12 km) site. Analysis of covariance revealed that MT levels in gills were more influenced by COX activity than with distance in the dispersion plume and was negatively correlated with labile zinc levels. In conclusion, MT induction was inversely related to the levels of labile zinc but positively so with the inflammation biomarker COX. Hence, the induction of MT in mussels exposed to the municipal effluent of a large city appears to be associated with either inflammatory processes or as compensation for the loss of labile essential metals. We propose that the simple and complimentary parameters of labile zinc and COX evaluations be used to link MT induction with divalent heavy metal exposure in environmental studies dealing with various type of contaminants in such complex contaminant mixture effluents

    Chandra X-ray spectroscopy of the very early O supergiant HD 93129A: constraints on wind shocks and the mass-loss rate

    Get PDF
    We present analysis of both the resolved X-ray emission line profiles and the broadband X-ray spectrum of the O2 If* star HD 93129A, measured with the Chandra HETGS. This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10% of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths Rstar. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star's closest visual companion at a distance of ~100 AU. The broadband X-ray spectrum is fit with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broadband wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate: Mdot = 5.2_{-1.5}^{+1.8} \times 10^{-6} Msun/yr and Mdot = 6.8_{-2.2}^{+2.8} \times 10^{-6} Msun/yr, respectively. This is the first consistent modeling of the X-ray line profile shapes and broadband X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3 to 4 compared to the standard H-alpha mass-loss rate that assumes a smooth wind.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 12 pages, 10 figures (incl. 5 color

    Mass-Loss And Magnetospheres: X-Rays From Hot Stars And Young Stellar Objects

    Get PDF
    High-resolution X-ray spectra of high-mass stars and low-mass T-Tauri stars obtained during the first year of the Chandra mission are providing important clues about the mechanisms which produce X-rays on very young stars. For zeta Puppis (O4 If) and zeta Ori (O9.5 I), the broad, blue-shifted line profiles, line ratios, and derived temperature distribution suggest that the X-rays are produced throughout the wind via instability-driven wind shocks. For some less luminous OB stars, like theta^1 Ori C (O7 V) and tau Sco (B0 V), the line profiles are symmetric and narrower. The presence of time-variable emission and very high-temperature lines in theta^1 Ori C and tau Sco suggest that magnetically confined wind shocks may be at work. The grating spectrum of the classical T-Tauri star TW Hya is remarkable because the forbidden-line emission of He-like Ne IX and O VII is very weak, implying that the X-ray emitting region is very dense, n = 6E+12 cgs, or that the X-rays are produced very close to the ultraviolet hotspot at the base of an accretion funnel. ACIS light curves and spectra of flares and low-mass and high-mass young stellar objects in Orion and rho Ophiuchus further suggest that extreme magnetic activity is a general property of many very young stars

    Chandra HETGS Multiphase Spectroscopy Of The Young Magnetic O Star Theta(1) Orionis C

    Get PDF
    We report on four Chandra grating observations of the oblique magnetic rotator theta(1) Ori C (O5.5 V), covering a wide range of viewing angles with respect to the star\u27s 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray - emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta(1) Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray - emitting plasma with rotation phase

    Chandra X-Ray Spectroscopy Of The Very Early O Supergiant HD 93129A: Constraints On Wind Shocks And The Mass-Loss Rate

    Get PDF
    We present an analysis of both the resolved X-ray emission-line profiles and the broad-band X-ray spectrum of the O-2 If* star HD 93129A, measured with the Chandra High Energy Transmission Grating Spectrometer ( HETGS). This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind-shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10 per cent of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths of R-*. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star\u27s closest visual companion at a distance of 100 au. The broad-band X-ray spectrum is fitted with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broad-band wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate:. M = 5.2(-1.5)(+1.8) x 10(-6) and 6.8(-2.2)(+2.8) x 10(-6) M-circle dot yr(-1), respectively. This is the first consistent modelling of the X-ray line-profile shapes and broad-band X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3-4 compared to the standard H alpha mass-loss rate that assumes a smooth wind

    X-ray emission from the giant magnetosphere of the magnetic O-type star NGC 1624-2

    Get PDF
    We observed NGC 1624-2, the O-type star with the largest known magnetic field Bp~20 kG), in X-rays with the ACIS-S camera onboard the Chandra X-ray Observatory. Our two observations were obtained at the minimum and maximum of the periodic Halpha emission cycle, corresponding to the rotational phases where the magnetic field is the closest to equator-on and pole-on, respectively. With these observations, we aim to characterise the star's magnetosphere via the X-ray emission produced by magnetically confined wind shocks. Our main findings are: (i) The observed spectrum of NGC 1624-2 is hard, similar to the magnetic O-type star Theta 1 Ori C, with only a few photons detected below 0.8 keV. The emergent X-ray flux is 30% lower at the Halpha minimum phase. (ii) Our modelling indicated that this seemingly hard spectrum is in fact a consequence of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a large amount of local absorption (~1-3 x 10^22 cm^-2). This combination is necessary to reproduce both the prominent Mg and Si spectral features, and the lack of flux at low energies. NGC 1624-2 is intrinsically luminous in X-rays (log LX emission ~ 33.4) but 70-95% of the X-ray emission produced by magnetically confined wind shocks is absorbed before it escapes the magnetosphere (log LX ISM corrected ~ 32.5). (iii) The high X-ray luminosity, its variation with stellar rotation, and its large attenuation are all consistent with a large dynamical magnetosphere with magnetically confined wind shocks.Comment: Accepted in MNRAS 13 pages, 10 figures, 4 table

    Observation of Replica Symmetry Breaking in the 1D Anderson Localization Regime in an Erbium-Doped Random Fiber Laser

    Full text link
    The analogue of the paramagnetic to spin-glass phase transition in disordered magnetic systems, leading to the phenomenon of replica symmetry breaking, has been recently demonstrated in a two-dimensional random laser consisting of an organic-based amorphous solid-state thin film. We report here the first demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime based on a unique random fiber grating system, which plays the role of the random scatterers and operates in the Anderson localization regime. The clear transition from a photonic paramagnetic to a photonic spin glass phase, characterized by the probability distribution function of the Parisi overlap, was verified and characterized. In this unique system, the radiation field interacts only with the gain medium, and the fiber grating, which provides the disordered feedback mechanism, does not interfere with the pump
    corecore