12 research outputs found

    Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study

    Get PDF
    BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400 consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20 000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of life and neuropsychological testing, will be performed at 6 months. Longitudinal assessments will continue up to 24 months post TBI in patient subsets. Advanced neuroimaging and genomic and biomarker data will be used to improve characterization, and analyses will include neuroinformatics approaches to address variations in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative effectiveness research provides an alternative to reductionistic clinical trials in restricted patient populations by exploiting differences in biology, care, and outcome to support optimal personalized patient management

    Postnatal-related changes in the size and total number of neurons in the caudal mesenteric ganglion of dogs: total number of neurons can be predicted from body weight and ganglion volume.

    No full text
    Aging is mostly characterized by a progressive decline of neuronal function that involves both the central and the peripheral nervous system. The aging process is accompanied by changes in either the number or the size of neurons. However, these data are controversial and not very well known in the sympathetic ganglia of large mammals. Hence, the present investigation aimed to study the dog's caudal mesenteric ganglion (CMG) in three different periods of postnatal development, searching for qualitative and quantitative alterations. The CMG is responsible for the large intestine, internal anal sphincter, and partially the urogenital system innervations. Nine dead male dogs from the Veterinary Hospital of the College of Veterinary Medicine at University of São Paulo were divided into three well-defined age groups (1-2 months old, 1-2 years old, and 5-10 years old). The stereological study was pursued using the physical disector method combined to the Cavalieri principle. The postnatal development was accompanied by an increase in the nonneuronal tissue amount and in ganglion volume. Additionally, the total number of neurons also increased during aging (from 70,140 to 1,204,516), although the neuronal density showed an opposite trend (from 29,911 to 11,500 mm(-3)). Due to the interrelation between either body weight or ganglion volume and aging in the dogs investigated in this study, it was possible to predict the total number of neurons in CMG using both body weight and ganglion volume in an attempt to verify whether or not size and total number of neurons are both allometrically and aging ruled, i.e., if either the animal's body weight and ganglion volume or aging influence these parameters. The prediction of the total number of neurons was very close to the initially estimated values

    Postnatal-related changes in the size and total number of neurons in the caudal mesenteric ganglion of dogs: total number of neurons can be predicted from body weight and ganglion volume.

    No full text
    Aging is mostly characterized by a progressive decline of neuronal function that involves both the central and the peripheral nervous system. The aging process is accompanied by changes in either the number or the size of neurons. However, these data are controversial and not very well known in the sympathetic ganglia of large mammals. Hence, the present investigation aimed to study the dog's caudal mesenteric ganglion (CMG) in three different periods of postnatal development, searching for qualitative and quantitative alterations. The CMG is responsible for the large intestine, internal anal sphincter, and partially the urogenital system innervations. Nine dead male dogs from the Veterinary Hospital of the College of Veterinary Medicine at University of São Paulo were divided into three well-defined age groups (1-2 months old, 1-2 years old, and 5-10 years old). The stereological study was pursued using the physical disector method combined to the Cavalieri principle. The postnatal development was accompanied by an increase in the nonneuronal tissue amount and in ganglion volume. Additionally, the total number of neurons also increased during aging (from 70,140 to 1,204,516), although the neuronal density showed an opposite trend (from 29,911 to 11,500 mm(-3)). Due to the interrelation between either body weight or ganglion volume and aging in the dogs investigated in this study, it was possible to predict the total number of neurons in CMG using both body weight and ganglion volume in an attempt to verify whether or not size and total number of neurons are both allometrically and aging ruled, i.e., if either the animal's body weight and ganglion volume or aging influence these parameters. The prediction of the total number of neurons was very close to the initially estimated values

    Endothelin-1 and endothelin receptors in the basilar artery of the capybara.

    No full text
    Little is known about cerebral vasculature of capybara, which seems may serve as a natural model of studying changes in cerebral circulation due to internal carotid artery atrophy at animal sexual maturation. This is the first study of the light- and electron-immunocytochemical localisation of endothelin-1 (ET-1) and ETA and ETB endothelin receptors in the basilar artery of capybaras (6 to 12-month-old females and males) using an ExtrAvidin detection method. All animals examined showed similar patterns of immunoreactivity. Immunoreactivity for ET-1 was detected in the endothelium and adventitial fibroblasts, whilst immunoreactivity for ETA and ETB receptors was present in the endothelium, vascular smooth muscle, perivascular nerves and fibroblasts. In endothelial cells immunoreactivity to ET-1 was pronounced in the cytoplasm or on the granular endoplasmic reticulum. Similar patterns of immunolabelling were observed for ETA and ETB receptors, though cytoplasmic location of clusters of immunoprecipitate seems dominant. These results suggest that the endothelin system is present throughout the wall of the basilar artery of capybara

    Endothelin-1 and endothelin receptors in the basilar artery of the capybara.

    No full text
    Little is known about cerebral vasculature of capybara, which seems may serve as a natural model of studying changes in cerebral circulation due to internal carotid artery atrophy at animal sexual maturation. This is the first study of the light- and electron-immunocytochemical localisation of endothelin-1 (ET-1) and ETA and ETB endothelin receptors in the basilar artery of capybaras (6 to 12-month-old females and males) using an ExtrAvidin detection method. All animals examined showed similar patterns of immunoreactivity. Immunoreactivity for ET-1 was detected in the endothelium and adventitial fibroblasts, whilst immunoreactivity for ETA and ETB receptors was present in the endothelium, vascular smooth muscle, perivascular nerves and fibroblasts. In endothelial cells immunoreactivity to ET-1 was pronounced in the cytoplasm or on the granular endoplasmic reticulum. Similar patterns of immunolabelling were observed for ETA and ETB receptors, though cytoplasmic location of clusters of immunoprecipitate seems dominant. These results suggest that the endothelin system is present throughout the wall of the basilar artery of capybara
    corecore