48 research outputs found

    Orbital Constellation Design and Analysis Using Spherical Trigonometry and Genetic Algorithms: A Mission Level Design Tool for Single Point Coverage on Any Planet

    Get PDF
    Recent interest surrounding large scale satellite constellations has increased analysis efforts to create the most efficient designs. Multiple studies have successfully optimized constellation patterns using equations of motion propagation methods and genetic algorithms to arrive at optimal solutions. However, these approaches are computationally expensive for large scale constellations, making them impractical for quick iterative design analysis. Therefore, a minimalist algorithm and efficient computational method could be used to improve solution times. This thesis will provide a tool for single target constellation optimization using spherical trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective optimization function. Each constellation will be evaluated on a normalized fitness scale to determine optimization. The performance objective functions are based on average coverage time, average revisits, and a minimized number of satellites. To adhere to a wider audience, this design tool was written using traditional Matlab, and does not require any additional toolboxes. To create an efficient design tool, spherical trigonometry propagation will be utilized to evaluate constellations for both coverage time and revisits over a single target. This approach was chosen to avoid solving complex ordinary differential equations for each satellite over a long period of time. By converting the satellite and planetary target into vectors of latitude and longitude in a common celestial sphere (i.e. ECI), the angle can be calculated between each set of vectors in three-dimensional space. A comparison of angle against a maximum view angle, , controlled by the elevation angle of the target and the satellite’s altitude, will determine coverage time and number of revisits during a single orbital period. Traditional constellations are defined by an altitude (a), inclination (I), and Walker Delta Pattern notation: T/P/F. Where T represents the number of satellites, P is the number of orbital planes, and F indirectly defines the number of adjacent planes with satellite offsets. Assuming circular orbits, these five parameters outline any possible constellation design. The optimization algorithm will use these parameters as evolutionary traits to iterate through the solutions space. This process will pass down the best traits from one generation to the next, slowly evolving and converging the population towards an optimal solution. Utilizing tournament style selection, multi-parent recombination, and mutation techniques, each generation of children will improve on the last by evaluating the three performance objectives listed. The evolutionary algorithm will iterate through 100 generations (G) with a population (n) of 100. The results of this study explore optimal constellation designs for seven targets evenly spaced from 0° to 90° latitude on Earth, Mars and Jupiter. Each test case reports the top ten constellations found based on optimal fitness. Scatterplots of the constellation design solution space and the multi-objective fitness function breakdown are provided to showcase convergence of the evolutionary genetic algorithm. The results highlight the ratio between constellation altitude and planetary radius as the most influential aspects for achieving optimal constellations due to the increased field of view ratio achievable on smaller planetary bodies. The multi-objective fitness function however, influences constellation design the most because it is the main optimization driver. All future constellation optimization problems should critically determine the best multi-objective fitness function needed for a specific study or mission

    Protective Orders and Commercial Information--Is Good Cause Good Enough?

    Get PDF

    Planet Hunters X: Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler Extended Mission

    Get PDF
    We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR II-band and Keck KsK_s-band detection limits at 1" were ΔmI=4.4\Delta m_{I}=4.4~mag and ΔmKs=6.1\Delta m_{K_s}=6.1~mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be eclipsing binaries (EBs), and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3" of three candidate transiting exoplanet host stars and six likely EBs. Six of the nine detected companions are new discoveries; one of the six, EPIC 206061524, is associated with a planet candidate. Among the EB candidates, companions were only found near the shortest period ones (P<3P<3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high-resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries.Comment: Accepted in A

    Planet Hunters. VIII. Characterization of 41 Long-Period Exoplanet Candidates from Kepler Archival Data

    Get PDF
    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0-Q17). Among them, 17 exhibit only one transit, 14 have two visible transits and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1-3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4". We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. (2014). We validate 7 planet candidates that have planet confidence over 0.997 (3-{\sigma} level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with 4 transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%-33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hours, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.Comment: Published on ApJ, 815, 127 Notations of validated planets are changed in accordance with naming convention of NASA Exoplanet Archiv

    BU Canis Minoris -- the Most Compact Known Flat Doubly Eclipsing Quadruple System

    Full text link
    We have found that the 2+2 quadruple star system BU CMi is currently the most compact quadruple system known, with an extremely short outer period of only 121 days. The previous record holder was TIC 219006972 (Kostov et al. 2023), with a period of 168 days. The quadruple nature of BU CMi was established by Volkov et al. (2021), but they misidentified the outer period as 6.6 years. BU CMi contains two eclipsing binaries (EBs), each with a period near 3 days, and a substantial eccentricity of about 0.22. All four stars are within about 0.1 solar mass of 2.4 solar masses. Both binaries exhibit dynamically driven apsidal motion with fairly short apsidal periods of about 30 years, thanks to the short outer orbital period. The outer period of 121 days is found both from the dynamical perturbations, with this period imprinted on the eclipse timing variations (ETV) curve of each EB by the other binary, and by modeling the complex line profiles in a collection of spectra. We find that the three orbital planes are all mutually aligned to within 1 degree, but the overall system has an inclination angle near 83.5 degrees. We utilize a complex spectro-photodynamical analysis to compute and tabulate all the interesting stellar and orbital parameters of the system. Finally, we also find an unexpected dynamical perturbation on a timescale of several years whose origin we explore. This latter effect was misinterpreted by Volkov et al. (2021) and led them to conclude that the outer period was 6.6 years rather than the 121 days that we establish here.Comment: 19 pages, 8 pages, accepted to MNRA

    TESS hunt for young and maturing exoplanets (THYME). III. A two-planet system in the 400 Myr Ursa major group

    Get PDF
    A.W.M. was supported through NASA's Astrophysics Data Analysis Program (80NSSC19K0583). M.L.W. was supported by a grant through NASA's K2 GO program (80NSSC19K0097). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1650116 to P.C.T. A.V.'s work was performed under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator Program grant 80NSSC19K1727.Exoplanets can evolve significantly between birth and maturity, as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<1 Gyr) offer an opportunity to probe the critical early stages of this evolution, where planets evolve the fastest. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M∗=0.99±0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23 Myr). Based on the TESS light curve and updated stellar parameters, we estimate the planet radii are 2.15±0.10R⊕ and 2.67±0.12R⊕, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than about 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating that the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation.PostprintPeer reviewe

    Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE
    corecore