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ABSTRACT  

Orbital Constellation Design and Analysis Using Spherical Trigonometry and Genetic 

Algorithms: A Mission Level Design Tool for Single Point Coverage on Any Planet  

Joseph Ratcliffe Gagliano 

 Recent interest surrounding large scale satellite constellations has increased analysis 

efforts to create the most efficient designs. Multiple studies have successfully optimized 

constellation patterns using equations of motion propagation methods and genetic algorithms to 

arrive at optimal solutions. However, these approaches are computationally expensive for large 

scale constellations, making them impractical for quick iterative design analysis. Therefore, a 

minimalist algorithm and efficient computational method could be used to improve solution 

times. This thesis will provide a tool for single target constellation optimization using spherical 

trigonometry propagation, and an evolutionary genetic algorithm based on a multi-objective 

optimization function. Each constellation will be evaluated on a normalized fitness scale to 

determine optimization. The performance objective functions are based on average coverage 

time, average revisits, and a minimized number of satellites. To adhere to a wider audience, this 

design tool was written using traditional Matlab, and does not require any additional toolboxes.  

To create an efficient design tool, spherical trigonometry propagation will be utilized to 

evaluate constellations for both coverage time and revisits over a single target. This approach 

was chosen to avoid solving complex ordinary differential equations for each satellite over a long 

period of time. By converting the satellite and planetary target into vectors of latitude and 

longitude in a common celestial sphere (i.e. ECI), the angle 𝐴 can be calculated between each set 

of vectors in three-dimensional space. A comparison of angle 𝐴 against a maximum view angle, 

𝐴𝑚𝑎𝑥 , controlled by the elevation angle of the target and the satellite’s altitude, will determine 

coverage time and number of revisits during a single orbital period.  

Traditional constellations are defined by an altitude (a), inclination (I), and Walker Delta 

Pattern notation: T/P/F. Where T represents the number of satellites, P is the number of orbital 

planes, and F indirectly defines the number of adjacent planes with satellite offsets. Assuming 

circular orbits, these five parameters outline any possible constellation design. The optimization 

algorithm will use these parameters as evolutionary traits to iterate through the solutions space. 

This process will pass down the best traits from one generation to the next, slowly evolving and 

converging the population towards an optimal solution. Utilizing tournament style selection, 

multi-parent recombination, and mutation techniques, each generation of children will improve 

on the last by evaluating the three performance objectives listed. The evolutionary algorithm will 

iterate through 100 generations (G) with a population (n) of 100.  

The results of this study explore optimal constellation designs for seven targets evenly 

spaced from 0° to 90° latitude on Earth, Mars and Jupiter. Each test case reports the top ten 

constellations found based on optimal fitness. Scatterplots of the constellation design solution 
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space and the multi-objective fitness function breakdown are provided to showcase convergence 

of the evolutionary genetic algorithm. The results highlight the ratio between constellation 

altitude and planetary radius as the most influential aspects for achieving optimal constellations 

due to the increased field of view ratio achievable on smaller planetary bodies. The multi-

objective fitness function however, influences constellation design the most because it is the 

main optimization driver. All future constellation optimization problems should critically 

determine the best multi-objective fitness function needed for a specific study or mission. 
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CHAPTER 

1. INTRODUCTION 

Satellite constellations are space based systems of two or more spacecraft orbiting one 

celestial body in a designed pattern or scheme. Utilizing multiple satellites provides more 

frequent passes per day, and can provide greater or continuous coverage over a planet’s surface. 

A few notable constellation types are; Walker Delta Patterns (WDP), elliptical, streets of 

coverage, satellite trains, and geosynchronous constellations, which will all be defined in more 

depth. The most common among them are WDP’s, which consist of circular orbits evenly spaced 

around a celestial body.   

Constellations have been in use since the dawn of spaceflight with the inaugural system 

TRANSIT. First used for global positioning by the United States Navy in 1964, this constellation 

system consisted of only five satellites in polar orbits, relaying global positioning of military 

units around the globe roughly once per hour [1]. Since then, TRANSIT has been eclipsed by 

multiple military programs, one of which is widely known as the Global Positioning System 

(GPS), which provides millions of people with instant access to their current location on Earth at 

any time. This constellation, while small, has become essential to human life and could be 

considered the most important constellation to date. It’s comprised of twenty-four satellites 

which are evenly divided into six equally spaced orbital planes creating a WDP, providing 

constant coverage around Earth [2].  

 

1.1. Problem Statement 

Over the last twenty years satellites have adopted smaller, more advanced components 

leading to size and mass reductions. To compliment this, launch vehicles have become more 

accommodating by allowing multiple payloads on a single launch, able to carry tens or even 

hundreds of payloads into a single orbit. This allows mission designers to expand their solutions 

to include larger satellite constellations. However, the design and analysis of hundreds or even 

thousands of satellites can slow down the mission design process due to extra computational time 

needed for trade evaluations. So, to combat this issue, the development of a simple, efficient 

constellation design tool is needed. This thesis provides the background, methodology, and 

implementation of a constellation optimization design tool using spherical trigonometry, and an 

evolutionary genetic algorithm based on a multi-objective function.  

This work is a spin-off of Christopher Hind’s thesis, “A Pareto-Frontier Analysis of 

Performance Trends for Small Regional Coverage LEO Constellation Systems” [3]. Aiming to 

extend the constellation size and propagation limitations in Hind’s work, while retaining the 

evolutionary genetic algorithm aspects. To diversify this work further, the results and discussion 

section will explore the performance of constellations on multiple planetary bodies. 
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1.2. Background 

A comprehensive overview of constellation types will be covered with a list of example 

missions to date. Afterwards, Walker Delta Patterns will be introduced and explained in detail 

followed by a brief history of genetic algorithms. Finally, a review of previous works and their 

findings will provide a basis of constellation design knowledge before diving into the 

methodology. 

1.2.1. Constellation Classifications 

A constellation is a set of satellites distributed around a central body working together to 

accomplish a common goal. There are an infinite number of constellation solutions to a given 

mission, whether it be global navigation, constant communication, or real-time weather tracking, 

so selecting a final design relies on the pros and cons of each system’s performance. 

Constellations can be organized in various ways based on orbital parameters such as altitude, 

inclination, eccentricity and pattern formation. [4] 

Most constellations can be classified by one of the following categories: 

• Geosynchronous constellations 

• Streets-of-Coverage constellations 

• Walker-Delta pattern constellations  

• Elliptical Orbit pattern constellations 

• Other constellations 

Satellites in geosynchronous constellations are located approximately 35,786 km above 

the Earth’s equator experiencing an orbital period of twenty-four hours, matching the rotation of 

a single point on the surface. These systems are simple to analyze, since they do not move 

relative to Earth’s orientation, and they can sufficiently cover surfaces of interest with small 

constellations of two or three satellites. 

Streets-of-Coverage constellations use satellites oriented in multiple polar orbit planes to 

evenly cover the equator’s various longitude bins. This setup is advantageous when coverage of 

the entire planet is required, however, these constellations require satellites to spend most of their 

life span over the poles, and can end up in excessive coverage scenarios [5]. Figure 1.5 shows 

how each polar orbit accounts for a certain longitude bin around the constellations host planet. 
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Figure 1.1 STREETS-OF-COVERAGE AND LONGITUDE BIN DIVISION  

Walker Delta Pattern (WDP) constellations consist of satellites with circular orbits, along 

with a set altitude and inclination. These constellations rely heavily on patterns to accomplish 

coverage and revisit goals. WDP constellation design parameters will be described in more detail 

in the next section.  

Elliptical orbit pattern constellations are systems utilizing highly eccentric orbiters. 

Historically most of these constellations have been made up of Russian communications 

satellites in Molniya orbits. These orbital planes are highly inclined allowing for the satellite’s 

apogee to sit above high latitude sites for long periods of time. Due to varying altitudes, elliptical 

orbiters are affected more severely by perturbations such as J2, drag, and SRP. 

Other constellations are mixtures of the aforementioned categories, or constellation 

systems that follow no noticeable pattern. For example, the proposed NISAR mission in 2020 

could utilize a constellation of twelve satellites clustered together on the same orbital trajectory. 

The organization of multiple satellites orbiting in unison create a train of observation units that 

cover the same path or coverage area within minutes of one another, allowing for rapid-revisits. 

These tight flying constellations can reduce launch vehicle costs by using rideshare opportunities 

on launch vehicles. [6] 
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1.2.2. Walker Delta Patterns 

In 1970, J.G. Walker of the Royal Aircraft Establishment published a technical study 

exploring how many satellites would be needed to continuously cover any geographical point on 

the surface of the Earth. Walker’s work provided various solutions to the global coverage 

problem by arranging satellites evenly around a celestial body in different patterns and orbital 

spacing. In doing so, Walker developed a reference nomenclature to track each scenario 

variation.  

Walker Delta Patterns (WDP) are traditionally defined by three parameters in the 

following syntax, T/P/F. Where T indicates the total number of satellites in the entire 

constellation. Then P defines the number of equally spaced orbital planes around 360° of radial 

space with respect to a defined reference plane (i.e. Earth’s equator). The total number of 

satellites, T, must be evenly divided to provide S number of satellites per orbital plane, T = S*P. 

Lastly, F is an integer that infers the phase angle offset of satellites found in neighboring orbital 

planes. F can be any value between zero and P-1, giving a phase angle of 𝛾 = F*(360°/T), which 

again defines the ascending node offset in neighboring orbital planes. [7]  

Each satellite in a WDP maintains a circular orbit (𝑒 = 0) along with a set altitude (a) and 

inclination (I) for each constellation. In terms of classical orbital elements, all satellites in a 

WDP are comprised of the exact same elements, except for the RAAN, Ω , and True Anomaly, θ. 

These two unique parameters define the orbital plane orientation, and the satellite spacing around 

each plane’s orbit. With such similar orbits, each unit in a constellation undergoes approximately 

the same minimal perturbations over any given period. So the effects of J2, drag, SPR and other 

perturbations will not be included in this study. 

 

1.2.3. Genetic Algorithms 

A genetic algorithm is a metaheuristic solver that exploits Darwin’s theory of natural 

selection to diversify and evolve a population’s gene pool, first introduced by John Holland in 

the mid-1960s [8]. Based heavily on survival of the fittest selection techniques, genetic 

algorithms provide quick and robust processes for obtaining optimal solutions in large non-

linear, multivariable problems. Genetic algorithms have these five basic components:  

1) A genetic representation of solutions to the problem 

2) A way to create an initial population of solutions 

3) An evaluation function rating solutions in terms of their fitness 

4) Genetic operators that alter the genetic composition of children during reproduction 

5) Values for the parameters of genetic algorithms  
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Based on these principles, genetic algorithms have spread into many scientific fields of 

study including economics, machine learning, energy efficiency, social systems, and of course 

optimization [9]. This study will rely on an evolutionary genetic algorithm to iterate and 

optimize constellation designs.  

Evolutionary genetic algorithms utilize biological evolution techniques to mix and vary a 

given gene pool until an optimal solution is found. Starting with an initial random population, 

each solution is evaluated based on an objective fitness function and assigned a fitness value. 

The standing population is then reduced to a few parents that have endured a “survival of the 

fittest” selection process. These parents’ genes are then mixed to create an enhanced population 

of children for the next generation in the recombination phase. Additionally, implementing 

randomized mutations will diversify the gene pool, reducing the risk of finding a localized 

minimum or maximum. Over multiple generations, the population will slowly cross-breed until 

the highest performing genes achieve the greatest fitness value within a solution space are found 

[8] [9] [3]. For more information regarding evolutionary genetic algorithm, please reference the 

book Introduction to Evolutionary Computing by Eiben and Smith [10]. 

 

1.2.4. Previous Studies 

Constellation design has been studied since the 1960’s, with publications from labs and 

research institutes around the world. With the Space Race at hand, this field of study grew 

quickly to advance technologies and improve military capabilities. Trade studies at the time 

relied heavily on trial and error to evaluate fitness performance of multiple constellations. In the 

1970’s J. G. Walker published two reports on analyzing Walker Delta Pattern systems using 

spherical trigonometry to determine coverage time. His research, relying on a personally 

developed program deemed COCO (Circular Orbit COverage), was written in FORTRAN and 

could only evaluate a maximum of 25 satellites at a time via punch cards with terms T/P/F 

designated [7] [11]. Computers soon allowed for faster evaluation turnaround and extensive 

constellation variations for larger trade studies. Around the turn of the century, a comprehensive 

study by Lang and Adams developed an extensive list of constellations between 5 and 100 

satellites that would provide 1-to-4 fold full Earth coverage performance analysis. Their study 

provided mission architects with a list of constellation options that would optimize overall 

system cost of a mission by accounting for the number of orbital planes, or considering the best 

constellation to deploy from minimal launch vehicles [12]. Further studies, like Yuri 

Ulybyshev’s Satellite Constellation Design for Complex Coverage, provide alternative geometric 

analytical methods to evaluate constellations. For example, continuous and dis-continuous 

coverage can be determined based on the location of a target grid within a two-dimensional 

polygon mapping of satellite positioning [13].  
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Genetic algorithms, on the other hand, were slower to be adopted because of the limited 

computational power available at the time for massive iteration studies. Driven mainly by theory 

and small-scale demonstrations, limited research or advances were made before the 1980’s. 

Holland’s 1975 book Adaptation in Natural and Artificial Systems popularized the theory of 

computational evolution [14], but it wasn’t until 1989 when David E. Goldberg published his 

book, Genetic Algorithms in Search, Optimization, and Machine Learning that genetic 

algorithms were widely implemented into various fields of study. His book provided source code 

and clear examples of researchers applying genetic algorithms to solve various problems [9] 

[15]. Over the next decade genetic algorithms would integrate new optimization schemes to a 

variety of fields. So, problems that normally posed large, discontinuous, or traditionally 

unsolvable solution spaces began to rely on these genetic algorithms.  

As genetic algorithms became more well-known, they began to be used in constellation 

optimization problems. One of the first studies completed by Eric Frayssinhes in 1996 

implemented a binary encoding mechanism to iterate on circular orbits characteristics. The 

resulting optimal constellations from his work broke from the norm of tradition Walker Delta 

Patterns, expanding the constellation solution space [16]. Another early report by William Mason 

utilized a Pareto genetic algorithm to get a hand-full of optimized constellation solutions. These 

options created an optimal frontier, where no performance metric could be improved without 

degrading another. The scheme was called the Modified Illinois Non-dominated Sorting Genetic 

Algorithm (MINSGA). Mason also implemented STK (Satellite Tool Kit, at that time) to help 

evaluate each constellation design for global coverage [17]. Continued studies explored multi-

objective optimization fitness functions along with more advanced Pareto-Frontiers. For 

example, M. Asvial’s work relied on a rank fitness assignment method for multi-objective 

optimization, where another non-dominated genetic algorithm was used to find multiple Pareto-

optimal constellation design solutions [18]. Similarly, Matthew Ferringer’s article in 2006, 

Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation, 

provides a constellation designer with an optimization tool for a discontinuous solution space. 

His non-dominating sorting genetic algorithm (NSGA-II) generates sets of constellations on 

Pareto-Frontiers, which again highlights the tradeoffs between a set of conflicting metrics [19]. 

 

1.3. Current Field Status 

Following a proven history of successfully optimizing constellations with genetic 

algorithms, researchers have continued to advance their evaluation and iteration methods over 

the past two decades. In attempts to reduce computation time and improve solution reliability, 

recent studies have provided a series of useful methodologies for optimizing constellation 

designs. Current approaches for design algorithms usually contain the following three main 

components.  
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1) Orbital propagator – To evaluate constellations and obtain performance metrics 

2) Genetic algorithm – To iterate a population through a non-linear solution space 

3) Objective fitness function – To evaluate fitness and arrive at an optimal solution 

New studies focus on improving one or more of these components by trying alternative 

orbital propagation methods, advancing or refining GA’s, or varying multi-objective functions to 

arrive at Pareto-Frontiers quicker.  

Tengyue Mao’s report on Efficient Constellation Design Based on Improved Non-

dominated Sorting Genetic Algorithm-II increased the convergence accuracy of his genetic 

algorithm by implementing alternative multi-parent and SBX crossover operators to improve 

searching capabilities. He further improved the process by introducing Gaussian and Cauchy 

mutation methods to arrive at a Pareto-Frontier. Relying on the trusted propagation program STK 

to evaluate orbital performance, Mao only explored the effects of a modified genetic algorithm 

[20].  

A recent study by Tania Savitri at the Department of Aerospace Engineering, Korea 

Advanced Institute of Science and Technology (KAIST) explored how the implementation of a 

semi-analytical initial guess could reduce the overall computational load of his solver when 

applied to the orbital propagator. By avoiding the integration of satellite positioning over time, 

the computational load was reduced nine-fold with a recorded error increase of 0.5%. To prove 

his new propagation method, Savitri used the common NSGA-II genetic algorithm scheme to 

arrive at Pareto-Frontiers [8].  

Christopher Hind’s dissertation A Pareto-Frontier Analysis of Performance Trends for 

Small Regional Coverage LEO Constellation Systems focuses on a variation of the εNSGA-II 

algorithm to explore its effects on Pareto-Frontiers. This multi-objective optimization scheme 

prioritized epsilon dominated Pareto solutions within a pre-determined volume of the solution 

space. This technique thinned out the solution archive, reducing the computational storage 

required to save every optimal solution, while allowing a user to define the resolution of the 

Pareto-Frontier. Hind’s work also relied on STK for orbital propagation [3]. 

  

1.4. Proposed Solution  

As shown in the previous sections, multiple research papers have recreated and proven 

the effectiveness of constellation design algorithms. The proposed solution of this thesis will aim 

to further improve these studies by utilizing an alternative orbital propagation method based in 

spherical trigonometry, along with a unique evolutionary genetic algorithm and multi-objective 

function. 
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By limiting constellations to circular trajectories in idealized environments (i.e. no 

perturbations), satellites will exhibit predictable and repeatable orbits in inertial coordinate 

frames. Similarly, any fixed target on the surface of a planet will follow an exact path along its 

given latitude line. Expressing both the satellite and target as points in a common celestial 

sphere, allows the latitude and longitude of each object to be found based solely on a time step 

such as True Anomaly, θ, and its initial position. No state vectors or iterative propagation will be 

required. This process will then be scaled to include every satellite in a constellation. 

To evaluate each constellation, a common multi-objective function will evaluate each 

solution based on various performance objectives to provide a unique fitness value. The 

performance objectives coverage time, total revisits, and number of satellites will be assessed 

over a single orbital period. However, to summarize the long-term performance metrics of a 

constellation, each solution must be analyzed multiple times to simulate the target’s rotation on a 

planet. This can be accomplished by progressing the target locations initial position along its 

latitude line, evaluating an entire constellation for a single orbit at each point, and then averaging 

the resulting performance objectives. Depending on the step size, this approach can account for 

nearly any scenario the constellation could encounter as the host planet rotates about its spin 

axis. To find the fitness value of a constellation, each averaged performance objective evaluated 

will be equally weighted and summed.  

Once assigned a fitness value, an evolutionary genetic algorithm will iterate on the 

solutions by selecting the most fit individuals and recombining their traits into the next 

generation of children solutions. The selection process will be tournament based to reinforce 

Darwin’s theory of natural selection. The surviving parents will have their traits broken down 

and shuffled to create a child population. However, all traits have a probability to be mutated to 

help diversify and expand the solution space evaluated. Over multiple iterations the population 

will slowly approach an optimal constellation design. 
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2. METHODOLOGY 

In the methodology section each equation, tool, and analytic method used to arrive at the 

results will be covered in detail. Many subjects in this section will build off topics introduced in 

previous introduction sections. Review of the methodology will provide a full understanding of 

the numerical processes and workflow needed to arrive at the results. 

 

2.1. Reference Frames 

When describing orbits, it is important to introduce a consistent and relevant coordinate 

frame. Constellations defined in this study will rely on an inertial coordinate frame with its origin 

fixed at a planet’s center. Similar to the Earth Centered Inertial frame (ECI), these coordinate 

systems are fixed in space, with the X axis pointing towards the first point of Aries on the Vernal 

Equinox, while the Z axis is normal to the equatorial plane. These coordinate systems are useful 

when assessing the repeatability of satellites on the same orbital trajectory, since they will repeat 

indefinitely without perturbations. Figure 2.1 shows the ECI coordinate frame. 

 

Figure 2.1 ECI COORDINATE FRAME [21] 

 Inertial coordinate frames were chosen to express positioning vectors in a common 

celestial sphere via latitudes and longitudes. Both the satellite and surface target will be defined 

in this manner to exploit spherical trigonometry propagation techniques.  

2.2. Spherical Trigonometry Propagation 

2.2.1. Intro 

Relying on simplified circular orbits and idealized propagation, spherical trigonometry 

provides quick and efficient predictions of satellite and target positioning at any time step. 
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Without requiring traditional ordinary differential equation solvers such as ode45, spherical 

trigonometry reduces the computational time needed to fully evaluate large constellations in 

various scenarios. Expressed by latitudes and longitudes in a common celestial sphere, the 

position of a given satellite and target can always be expressed as a function of time or true 

anomaly with the use of basic trigonometric function. 

Spherical trigonometry propagation is being used in this application to determine the 

angle 𝐴 between a satellite’s position vector and the target’s position vector in a common 

celestial sphere. Since WDP constellation’s exhibit fixed altitudes, there exists a maximum angle 

𝐴𝑚𝑎𝑥 where the target loses line of sight with a satellite over the horizon. This limit will be the 

primary metric used to determine a constellation’s evaluation of coverage. A satellite will have a 

successful coverage pass if it maintains an angle 𝐴 in the range, 0° ≤ 𝐴 ≤ 𝐴𝑚𝑎𝑥, where a 0° 

angle represents when a satellite is directly above the target. 

 

2.2.2. Analysis 

To reduce computational time, orbits will be evaluated using spherical trigonometry to 

determine the angle between two points at any given time between a satellite and target. 

Equivalent to the angle extracted from the dot product of two vectors, 𝐴 will represent the angle 

between two vectors attached at their origin, see Figure 2.2. 

𝒓𝒔𝒂𝒕 ∙ 𝒓𝒕𝒂𝒓𝒈𝒆𝒕 = 𝑟𝑠𝑎𝑡𝑟𝑡𝑎𝑟𝑔𝑒𝑡𝑐𝑜𝑠(𝐴)                        (2.1) 

 

 

 

 

 

 

𝒓𝒔𝒂𝒕 

𝒓𝒕𝒂𝒓𝒈𝒆𝒕 

A 

Origin 

Figure 2.2 EXAMPLE DOT PRODUCT SHOWING THE ANGLE BETWEEN TWO VECTORS [27] 
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Figure 2.3 MAXIMUM ANGLE BETWEEN TARGET AND SATELLITE 

 A target’s minimum elevation angle and satellite altitude will bound the maximum angle, 

𝐴𝑚𝑎𝑥 , between a satellite’s and target’s position as shown in Figure 2.3. Using the law of sines, 

angles 𝐴𝑚𝑎𝑥  and 𝐶 can be found using the position vectors 𝒓𝒕𝒂𝒓𝒈𝒆𝒕 and 𝒓𝒔𝒂𝒕 which are defined by 

planet radius and satellite altitude. In this instance angle 𝐵 = 90° + 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐴𝑛𝑔𝑙𝑒. 

Alternatively, the 𝐴𝑚𝑎𝑥 value can be determined based on maximum satellite field of view 

angles by changing the elevation angle variable. 

 To evaluate an orbit using spherical trigonometry, both the target and satellite must first 

be defined in the celestial sphere with a respective latitude and longitude. A satellite’s latitude 

and longitude will be represented by variables 𝛹, and 𝛷 respectively, while the target’s latitude 

and longitude will be 𝛹𝐸  and 𝛷𝐸 respectively. Since each constellation has a pre-set inclination, 

the latitude of a satellite is bounded by a special case of Napier’s rules for right spherical 

triangles, 

sin( 𝛹) = sin(θ) sin (𝐼)                                                   (2.2) 

Similarly, a satellites longitude can be found using 

tan( 𝛷) = tan(θ) cos (𝐼)                                                  (2.3) 

where θ is true anomaly and 𝐼 represents the inclination. Exploiting circular orbits, θ will always 

increase linearly over time, meaning both 𝛹 and 𝛷 will repeat indefinitely. This is expected for 

orbits defined in inertial space without perturbations. Also, Equation 2.2 infers that a satellite’s 

celestial latitude will never exceed its inclination. Similarly, the longitude of a planetary target 
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will repeat in inertial coordinates, while its latitude will remain fixed. Equations 2.4 and 2.5 

define the target’s latitude and longitude in the celestial sphere. 

𝛹𝐸 =  𝛹0                                                              (2.4) 

𝛷𝐸 = 𝛷0 +  θ/𝑄                                                       (2.5) 

where Q represents the number of orbits over a single rotation of the host planet. For example, 

𝑄 = 16 for an orbital period of 90 minutes over a 24-hour day on Earth.  The θ/𝑄 term in 

Equation 2.5 continually advances the target’s longitude with respect to the celestial sphere, and 

allows synced linear progressions of both the satellite and target. 

 With both the target and satellites well defined within the celestial sphere, the angle 𝐴 

can now be determined between any latitude and longitude vectors using the following 

relationship. 

cos(𝐴) = cos(𝛹𝐸) cos(𝛹) cos(𝛷𝐸 −  𝛷) + sin(𝛹𝐸) sin (𝛹)                     (2.6) 

By expanding cos(𝛷𝐸 −  𝛷) and utilizing Equation 2.2, this can be rewritten as Equation 2.7 

below which avoids tangential singularities and directly correlates angle 𝐴 with the propagation 

steps of true anomaly, θ. 

cos(𝐴) = 𝐵𝑐𝑜𝑠(θ) +  𝐶𝑐𝑜𝑠(θ)                                             (2.7) 

where  

𝐵 =  cos(𝛹𝐸) cos(𝛷𝐸)                                                    (2.8) 

𝐶 =  cos(𝛹𝐸) sin(𝛷𝐸) cos(𝐼) + sin(𝛹𝐸) sin (𝐼)                               (2.9) 

 In their simplest relationships, the system of equations presented above assumes that the 

satellite and target begin propagation when their vectors of latitude and longitude are aligned. So 

to evaluate a constellation, offsets must be implemented between adjacent satellites for accurate 

evaluations [22]. Figure 2.4 depicts angle 𝐴 results between a single satellite at 61° and 800km 

and a given target at 35° latitude over five days. Figure 2.5 shows the same system but with two 

satellites in orbit separated by 180° in Ω (RAAN). The red line in both graphs represents 𝐴𝑚𝑎𝑥, 

meaning any time the oscillating lines spend below 𝐴𝑚𝑎𝑥 the target and satellite will maintain 

line of sight. 
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Figure 2.4 ANGLE A BETWEEN SATELLITE AND TARGET OVER FIVE DAYS. RED LINE REPRESENTS THE ANGLE 𝐴𝑚𝑎𝑥 

 

Figure 2.5 ANGLE A BETWEEN TWO SATELLITES AND A TARGET OVER FIVE DAYS. SATELLITE ORBITS ARE ROTATED 180° 

IN RAAN. RED LINE REPRESENTS THE ANGLE 𝐴𝑚𝑎𝑥  

As outlined in Section 1.2.2, there are five main parameters of a constellation that are 

considered for modeling any given scenario.  

1. Altitude: a 

2. Inclination: I 

3. Number of Satellites: T 

4. Number of Planes: P 

5. Non-Dimensional Measure of Relative Spacing: F 

Altitude and inclination determine the location and propagation metrics of a standard 

satellite, while T/P/F describe the relative spacing and offsets of a constellation. These offsets 

will be expressed in angles relative to either the celestial sphere or along a given orbital plane. 
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Angle α (alpha) will represent the radial spacing from plane to plane in the celestial sphere. β 

(beta) will represent the angle between two adjacent satellites who share the same orbital plane. 

And γ (gamma) will represent the angular offset between satellites from one plane to the next. 

See Figure 8 for a depiction of each angle offset. 

 

 

Figure 2.6 ANGLES ALPHA BETA AND GAMMA IN A 16/4/2 WALKER DELTA PATTERN CONSTELLATION  

In the illustration above there are four orbital planes, each containing four satellites. 

These sixteen satellites are spread out evenly due to the offset angles expressed in Equations 2.10 

through 2.12. Each angle is determined from the necessary satellites, planes, or adjacent phase 

angle offsets required to satisfy the constellation parameters 16/4/2 (T/P/F) [7]. 

𝛼 = 360/𝑃   𝛽 =
360

(
𝑇

𝑃
)
  𝛾 = 360 ∗ 𝐹/𝑇                      (2.10-12) 

Starting with Equation 2.7, the true anomaly term needs to be expanded to include 

satellite offsets within a single plane. Adding in both 𝛽 and 𝛾 angles will force each respective 

satellite to take on a different starting position for evaluation.  

cos(𝐴) = 𝐵𝑐𝑜𝑠(θ + 𝛽 + 𝛾) +  𝐶𝑐𝑜𝑠(θ + 𝛽 + 𝛾)                            (2.13) 

To account for Ω (RAAN) offsets between planes, angle 𝛼 is added to Equation 2.5. 

𝛷𝐸 = 𝛷0 + 𝛼 +  θ/𝑄                                                  (2.14) 

With each satellite clearly defined in the celestial sphere, a full constellation can be 

evaluated by stepping through a progression of true anomaly.  
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To account for initial conditions effecting constellation performance, each constellation 

will be evaluated over a single orbit period at multiple planetary start points. In other words, to 

evaluate a constellation over its lifespan, multiple initial conditions need to be looked at as the 

planet rotates in the celestial sphere. This approach will reduce computational time and allow for 

averaged performance evaluations of ever constellation. 

 

2.2.3. Verification Examples 

Since spherical trigonometry is an uncommon solution method for orbit propagation, it 

must be verified and compared against traditional methods. Conveniently, Matlab provides an 

ordinary differential equation solver called ode45, which has become a standard for accurately 

propagating satellites from initial position and velocity vectors. In its simplest terms the ode45 

solver takes these two state vectors and iterates them over time via the equations of motion. 

To validate spherical trigonometry propagation, the following two scenarios were setup 

for comparison.  

1. Propagate a single satellite in orbit with the same starting position in ECI. The target 

will maintain a latitude of 55 degrees. The satellite will have an altitude of 800km and 

an inclination of 60°. 

a. Matlab ode45 propagator (Figure 2.7) 

b. Spherical Trigonometry propagator (Figure 2.8) 

c. Overlay of both propagators (Figure 2.9) 

2. Propagate an 800/60°/12/3/1 WDP constellation. The target will maintain a latitude of 

55 degrees. 

a. Matlab ode45 propagator (Figure 2.10) 

b. Spherical Trigonometry propagator (Figure 2.11) 
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Figure 2.7 ONE SATELLITE AT 800KM ALTITUDE AND 60-DEGREE INCLINATION (ODE45) 

 

Figure 2.8 ONE SATELLITE AT 800KM ALTITUDE AND 60-DEGREE INCLINATION (SPHERICAL TRIGONOMETRY) 
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Figure 2.9 OVERLAID COMPARISON OF ODE45 AND SPHERICAL TRIGONOMETRY PROPAGATIONS (BLUE: ODE45, RED: 

SPHERICAL TRIGONOMETRY) 

 

Figure 2.10 ODE45 PROPAGATOR OF AN 800/60°/12/3/1 CONSTELLATION 
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Figure 2.11 SPHERICAL TRIGONOMETRY PROPAGATOR OF AN 800/60°/12/3/1 CONSTELLATION 

Figures 2.7 through 2.9 compare a single satellite using both ode45 and spherical 

trigonometry propagation. Looking closely at the peaks and valleys of Figures 2.7 and 2.8, 

smoother curves and greater fidelity can be seen in the ode45 solver since it accounts for more 

iterative time steps verses the set number of time steps for spherical trigonometry.  

Figures 2.10 and 2.11 depict a similar comparison with twelve satellites being propagated 

over twenty-four hours. Three distinct planes of four satellites can be seen in each of these 

graphical representations. From these examples it can be concluded that spherical trigonometry 

is a suitable substitute for propagating simple circular orbital constellations.    

Comparing the two, the spherical trigonometry propagator for a single orbiter took 0.003 

seconds to run while the ode45 propagator took 0.1 seconds. This difference begins to 

significantly balloon solution times with ode45 solvers. 

 

2.3. Multi-Objective Optimization 

Multi-objective optimization is the process by which an algorithm evaluates multiple 

objective functions to assign a fitness value used to converge on an optimal solution. This study 

will rely on the weighting and summation of multiple objective functions to produce a singular 

fitness value. This approach allows for quicker computations and simple selection of final 
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optimization solutions. To begin this process, one must decide which objectives should be used 

for optimization.  

For constellation design there are many objectives that can be used for optimization. Below 

is a short list of common options. 

1. Number of Spacecraft 

2. Coverage Time 

3. Gap Time 

4. Number of Revisits 

5. Constellation Altitude 

6. Constellation Inclination 

7. Number of Planes 

8. Excess Coverage Time  

This study will use the following objectives for evaluation: Number of Spacecraft, Coverage 

Time, and Number of Revisits. These three objectives provide a diverse look at a constellation’s 

performance and efficiency, and would be among the most important aspects for a mission 

architect to consider. The objectives chosen for this study were determined by the author, and 

were based heavily on the performance metrics considered in Hinds’ previous study. Also 

simplifying the evaluation method to compare a single fitness value verses multiple fronts 

(Pareto-Frontier) leads to quicker computational solution times. 

Equation 2.15 shows how multiple objective functions are weighted and summed together to 

create a standardized fitness value 𝐹. 

𝐹 = ∑𝑖=1
𝑀  𝑤𝑖𝑓𝑖(𝑥)                                                      (2.15) 

where 𝑤𝑖 and 𝑓𝑖 represent the weight and objective function of the ith objective, 𝑥, 

respectively for 𝑀 number of objectives. The sum of the weights must equal one [3]. This 

technique is useful when the influence of an objective is well known relative to a constellation’s 

design characteristic. Thus, this approach is applicable and reliable for determining optimized 

constellation designs, but it can limit the knowledge of objective trade-offs within a solution 

space. However, since all mission requirements are unique, there are no perfect multi-objective 

functions for solving every constellation design problem. Therefore, each objective and weight 

of the multi-objective function should be reevaluated before attempting optimization. For the 

sake of demonstration and consistency, the case studies in this paper will all rely on the 

following objective weight distribution for constellation analysis. 

𝐹 =
1

3
𝑆 +

1

3
𝐶 +

1

3
𝑅                                                   (2.16) 

where 𝑆, 𝐶, and 𝑅 represent the objective functions for Number of Spacecraft, Coverage 

Time, and Number of Revisits respectively. These objective functions are further defined below. 



20 

 

𝑆 = (
𝑆𝑎𝑡𝑠

𝑆𝑎𝑡𝑠𝑚𝑎𝑥
)                   𝐶 = 1 −

𝑡𝑐𝑜𝑣

𝑇𝑝
                  𝑅 = 1 −

𝑅𝑒𝑣𝑠

𝑆𝑎𝑡𝑠𝑚𝑎𝑥
                        (2.17-19) 

where 𝑆𝑎𝑡𝑠 represents the current number of satellites in the constellation being evaluated, 

𝑆𝑎𝑡𝑠𝑚𝑎𝑥 represents the maximum number of satellites available for evaluation in a single 

constellation, 𝑡𝑐𝑜𝑣 is the total coverage time of the constellation during one orbital period, 𝑇𝑝, 

and 𝑅𝑒𝑣𝑠 represents the number of revisits that occur over a single orbital period. 

These objective functions aim to normalize the performance of any constellation with three 

metrics. For this study 𝑆, 𝐶, and 𝑅 will range from 0 to 1, where smaller numbers indicate better 

constellation performance. Therefore, the algorithm defined in the next section will optimize the 

solution space by minimizing the multi-objective fitness function. A roadmap of each objective 

function can be found below. 

(Minimum Satellites) 0 ≤ 𝑆 < 1 (Maximum Satellites)                     (2.20) 

      (100% Coverage) 0 ≤ 𝐶 ≤ 1 (No Coverage)                           (2.21) 

    (Max Revisits) 0 ≤ 𝑅 ≤ 1 (No Revisits)                              (2.22) 

Once normalized and weighted, these terms are summed to find 𝐹, the total fitness value of a 

constellation solution, which should be bounded from 0 to 1 as well. With a clearly defined 

fitness scale, each constellation design can be ranked and compared side by side to clearly 

identify an optimal solution. 

  

2.4. Evolutionary Genetic Algorithm 

2.4.1. Intro 

Evolutionary genetic algorithms, as defined in Section 1.2.3, are iterative processes based 

on biological evolution principles that select, mix, and diversify traits in search of an optimal 

solution. This section will dive into the details and techniques of the evolutionary genetic 

algorithm used in this study. Emphasis will be put on the selection, recombination, and mutation 

aspects of the algorithm.  

 By using the five main constellation parameters a/I/T/P/F defined in Section 1.2.2 as 

traits, an evolutionary algorithm can be implemented to find an optimal constellation design. To 

determine the most optimal solution each constellation will be evaluated and assigned a 

normalized fitness value based on the multi-objective function defined in the previous section.  
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2.4.2. Process 

Starting with an initial random population of 𝑛 solutions, the evolutionary genetic 

algorithm will iterate through G generations, gradually enhancing each of the five constellation 

traits a/I/T/P/F until an optimal solution is achieved. To iterate through each generation there 

will be multiple steps employed to simulate natural selection. Figure 2.12 gives an overview of 

the evolutionary genetic algorithm steps.  

 

Figure 2.12 EVOLUTIONARY GENETIC ALGORITHM FLOW CHART 

First, the algorithm will determine each constellation’s fitness by evaluating individual 

performance with the multi-objective function outlined in Section 2.3. Each constellation will 

then have an equally random chance of being chosen to compete in a tournament based selection 

process. The randomly selected individuals will face off in 𝑛 number of groups. The selection 

pressure factor was set as 𝑘 = 𝑛 ∗ 0.1 to maintain a ratio that would not mis-represent the 

diversity of any population. This aspect will also restrict the number of high performing 

constellations per tournament, reducing the risk of premature convergence [23]. The individual 

with the greatest fitness from each pair will become a parent for the next generation. The traits 

from each winning parent will be pooled together in preparation for step two. 

The second step of this process is recombination, which mixes parent traits together to 

produce child constellations for subsequent generations. Drawing from the parent trait pool, each 
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child has an equal chance to be randomly assigned all five traits, a/I/T/P/F. However, since the 

number of satellites (T), planes (P) and offsets (F) are not always compatible between 

constellations (i.e. 15 satellites cannot evenly distribute across 10 planes), P and F will be 

randomly regenerated based on the value of T assigned to a child. This step aims to uniformly 

mix constellation traits by using the multi-parent recombination method [24].  

The third step involves a mutation process in which each child has an equal opportunity 

to have one or more of its traits randomly regenerated. The mutation parameter, 𝑚, represents 

the percentage of traits that will be altered among the current generation of children. This study 

uses a 5% mutation chance to promote constellation diversity. Past studies have explored 

mutation rates from 1-5% which influence convergence rates based on population and generation 

sizes [25]. Mutations are necessary to ensure that pre-mature convergence does not occur within 

the solution space since localized maxima can be found. By introducing a mutation rate, traits 

diversify and expand constellation capabilities, opening new portions of the solution space 

previously unexplored. 

Once the child population has been recombined and mutated appropriately, the process 

repeats itself, starting with fitness evaluations of the new generation. This sequence will continue 

until G generations have been evaluated, at which time the algorithm will identify an optimal 

constellation design.  

 

2.4.3. Verification 

To verify the evolutionary genetic algorithm functionality outlined in the previous 

section, two industry standard fitness models were optimized using the same algorithm used in 

this study. The first function was Rosenbrocks’ Valley which demonstrates a smooth contour 

solution space with three distinct and easily found maxima surrounding a valley with one distinct 

minima, which is the optimization goal. This function can be visualized in Figure 2.13. The 

second optimization problem was Ackley’s function which presents a rippled solution space 

spotted with local minima and maxima. The optimal solution however is clearly a distinct divot 

in the center of the contour which can be seen in Figure 2.14. These two examples were chosen 

to demonstrate how the evolutionary algorithm design chosen can optimize a variety of solution 

spaces. The following equations define these two fitness functions. Variables 𝑥 and 𝑦 in the 

following functions will act as the evolutionary traits that will be iterated by the genetic 

algorithm, and 𝑓 will represent the fitness function to minimize. [26] 

𝑓(𝑥, 𝑦) = 100(𝑦 − 𝑥2)2 + (1 − 𝑥)2                                        (2.23) 

𝑓(𝑥, 𝑦) = −20 ∗ 𝑒
−.2∗√

1

2
(𝑥2+𝑦2)

− 𝑒
1

2
(cos(2∗𝑝𝑖∗𝑥)+cos (2∗𝑝𝑖∗𝑦)) + 20 + 𝑒             (2.24) 
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Figure 2.13 ROSENBROCKS’ VALLEY FUNCTION FOR OPTIMIZATION VERIFICATION, REF EQUATION 2.23 [26] 

 

 

Figure 2.14 ACKLEY’S FUNCTION FOR OPTIMIZATION VERIFICATION, REF EQUATION 2.24 [26] 
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Similar to the multi-objective fitness function defined in Section 2.3, Equations 2.23 and 2.24 

use 𝑥 and 𝑦 to represent two traits that undergo iterative evolutions to optimize each function to 

its minimum value. Again, the evolutionary genetic algorithm will set the tournament selection 

pressure to 𝑘 = 𝑛 ∗ 0.1 and mutation rate as 𝑚 = 5%. The population and generation sizes 

however, were varied to explore the performance of the evolutionary genetic algorithm. Both 𝑛 

and 𝐺 stepped through the following sizes [10,20,30,50,100,200,500,1000]. The algorithm’s 

performance for each system is given below in Tables 2.1 and 2.2. 

Table 2.1 RESULTS FROM EVOLUTIONARY GENETIC ALGORITHM PERFORMANCE TRIALS ON ROSENBROCK’S VALLEY 

FUNCTION 

 

Table 2.2 RESULTS FROM EVOLUTIONARY GENETIC ALGORITHM PERFORMANCE TRIALS ON ACKLEY’S FUNCTION 

 

 By inspecting the two tables above and comparing multiple trials of this same verification 

technique to allow for various permutations to occur, it was found that increasing generation size 

(G) and population size (n) will minimize fitness. However, maximizing G and n to 1000 

increased solution times to an unpractical length. So to reduce overall solution time and achieve 

function convergence, the generation and population size of 100 was selected for this study. The 

verification trials above show minimization at these levels for both functions.  
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2.5. MATLAB Code and Implementation 

The intent of this thesis is to provide a tool for students and researchers to use when 

designing orbital constellations. All functions and scripts were written in MATLAB to provide a 

tool that that can be utilized and altered in both educational and commercial settings. These 

functions and scripts will accompany this thesis for both reference and implementation purposes.  

The following flow chart outlines the inputs, outputs, and flow of the constellation 

optimization process detailed in the previous sections. This will provide the audience a clear 

progression of the steps and processes followed to achieve the results presented. The full code in 

Appendix A will be complemented with comments to describe the terms or process occurring in 

each section. 

2.5.1. Flow Chart 

 

Figure 2.15 FLOWCHART OF CONSTELLATION OPTIMIZATION EVOLUTIONARY GENETIC ALGORITHM 

  



26 

 

3. RESULTS AND DISCUSSION 

This section will reveal the results from various test cases while elaborating on the effects of 

the evolutionary genetic algorithm and multi-objective fitness function used. The test cases 

chosen provide a varied look at optimal constellation designs for multiple planets with targets at 

different latitudes. The planets Earth, Mars and Jupiter were evaluated to highlight the design 

differences between smaller and larger bodies for constellation optimization.  

3.1. Performance Objectives 

The multi-objective optimization function aims to minimize the fitness of a constellation. 

Each of the three objectives in this study will be scales on a normalized factor from zero to one, 

with better performance being indicated by a smaller value. These objectives will then be 

weighted and summed together to arrive at a final fitness value used to compare constellations 

for selection purposes. 

Satellite minimization is the objective that observes how many satellites are in a constellation 

compared to the maximum satellite limit set by the user. For example, if the user wants to 

evaluate constellations with 20-50 satellites, the solution with twenty satellites would be given a 

value of zero, and a solution with fifty satellites would be given a value of one. 

Coverage maximization is the objective that evaluates the fraction of time a constellation 

spends over a target during one orbital period on average. Limited to a scale from zero to one, no 

coverage of the target is assigned a value of one, while full coverage is given a value of zero. 

Revisit maximization is the objective that evaluates the average number of satellites that pass 

within view of the target during an orbital period. A value of zero means that a constellation used 

the maximum number of satellites available, and each satellite passed over the target at least 

once during its orbit. A value of one infers that no satellites passed over the target during one 

orbital period. This objective relies on parameters. One, how many satellites were used compared 

to the maximum allowed for a constellation, and two, how many of those satellites passed the 

target during one orbital period on average.  

The objective weights are as follows: 

1) Satellite Minimization = 1/3 

2) Coverage Maximization = 1/3 

3) Revisits Maximization = 1/3 

3.2. Constellation Design Solutions 

The following sets of results reflect the outcomes of the evolutionary genetic algorithm 

attempting to optimize constellation designs using the multi-objective fitness function outlined in 

previous sections. The top ten optimal constellation solutions are given to show diversity and 
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convergence in the solution space. These results do not reflect perfect constellations for the given 

targets and are very subject to the multi-objective fitness function used.  

Each of the following tables, graphs, and discussion points will refer to a constellation 

optimization problem based around the following planets at each of the following latitudes: 

Planets: 

1) Earth at [0°, 15°, 30°, 45°, 60°, 75°, 90°] 

2) Mars at [0°, 15°, 30°, 45°, 60°, 75°, 90°] 

3) Jupiter at [0°, 15°, 30°, 45°, 60°, 75°, 90°] 

The solution space was kept constant for each test case listed and intentionally included a 

wide range for each design parameter. These relatively unbounded design parameters allowed 

each of these test cases to demonstrate the convergence performance of the evolutionary genetic 

algorithm around each of the host planets. For consistency the constellation solution space was 

limited by the following bounds for each test case. 

1) Altitude Range: [200, 1000] (km) 

2) Inclination Range: [0, 90] (degrees) 

3) T Range: [5, 100] 

4) P Range: [1, 100] 

5) F Range: [0, 99] 

3.2.1. Earth Constellations  

Constellations covering targets on Earth’s equator are relatively simple in nature and do 

not require strict altitudes to achieve peak performance. As shown in Table 3.1 below, 

constellations with varying low inclinations and one plane will provide optimal fitness based on 

the multi-objective function defined. The altitude for each constellation can range from 200 km 

to 1000 km because there is no benefit or drawback from higher or lower altitudes when nearly 

100 satellites can continually cover an equatorial target. Constellations only need to ensure full 

coverage, max revisits, and minimal satellites to arrive at an optimal solution. However, the 

results below highlight an important characteristic of the multi-objective fitness function being 

used in this study. The revisits fitness value and satellite fitness value are inversely related since 

the maximum number of revisits can only be achieved by using all the satellites available. So the 

sum of these two fitness values will never drop below 0.33. 
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Table 3.1 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 0° LATITUDE 

 

 

 

Figure 3.1 CONSTELLATION DESIGNS SOLUTION SPACE FOR EARTH TARGET AT 0° LATITUDE 

Figure 3.1 above depicts the three-dimensional constellation solution space populated 

with every solution found over 100 generations, each with 100 individuals. The fitness values 

shown represent the multi-objective fitness of each solution. The dark blue points are the optimal 



29 

 

solutions with minimized fitness. Intuitively this scatter plot makes sense with lower inclinations 

providing optimal solutions for targets at 0° latitude and any altitude. 

Figure 3.2 below provides another look at the solutions space in terms of each objective 

in the multi-objective fitness function. With the same fitness scale in place, this scatter plot 

highlights the linear correlation between the number of satellites and revisits achieved by each 

constellation. As the number of satellites reduces, dropping the overall fitness of a constellation 

solution, the revisit fitness value increases. Again, this occurs because the revisit fitness value is 

reliant on using the maximum number of satellites allowable. This correlation shows how the 

components of the multi-objective fitness function are intertwined and dependent on one another. 

For this reason, the fitness of any constellation will not drop below 0.33. 

 

Figure 3.2 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 0° LATITUDE 
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Table 3.2 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 15° LATITUDE 

 

Solutions for Earth targets at 15° latitude develop similar constellations to those found for 

equatorial targets. By using low inclinations, and maximum satellites, peak coverage and revisit 

performance can be achieved. However, to have line of sight with targets at 15° latitude each 

constellation needs to utilize higher altitudes to maintain a larger field of view. Increasing the 

inclinations for the constellations using a single plane would in fact degrade performance due to 

out of phase oscillations with the target.  

 

Figure 3.3 CONSTELLATION DESIGNS SOLUTION SPACE FOR EARTH TARGET AT 15° LATITUDE 
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Figure 3.4 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 15° LATITUDE 

Figure 3.3 and 3.4 above depicts the constellation design and multi-objective solution 

spaces for targets at 15° latitude. As explained, low inclinations and high altitudes play a key 

role in achieving peak performance in this scenario. This solution space is also clearly bounded 

by the inverse linear relationship between number of satellites and revisits. The vertical line of 

solutions on the left hand side indicate solutions that did not achieve any coverage or revisits. 

Table 3.3 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 30° LATITUDE 
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Upon inspection, Table 3.3 shows that Earth targets at 30° latitude require constellations 

with multiple planes, high inclinations, and less satellites to minimize the multi-objective fitness 

function. With satellites spread-out on multiple planes more passes can be achieved over the 

target because of precession around the Earth’s spin axis. The most common inclinations listed 

are above 30° to provide constellations with greater opportunities to supply total coverage with 

less satellites. By increasing constellation inclinations above a target’s latitude each satellite can 

utilize both southern and northern passes. Notice how the one instance of a constellation with a 

lower inclination (24.83° ) requires maximum altitude to maintain performance with the other 

constellations. 

The two graphs below show the constellation and multi-objective solution spaces for 

Earth targets at 30° latitude. In Figure 3.5 solutions achieve better performance with inclinations 

near and above 30° and maximum altitudes. Figure 3.6 resembles the earlier multi-objective 

solution spaces, but with a less pronounced linear trend optimization line between satellites and 

revisits. 

 

Figure 3.5 CONSTELLATION DESIGN SOLUTION SPACE FOR EARTH TARGET AT 30° LATITUDE 
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Figure 3.6 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 30° LATITUDE 

Table 3.4 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 45° LATITUDE 

 

Similarly, targets at 45° latitude need constellations with inclinations greater than the 

target to maximize coverage during a given orbital period. Multiple planes are required to 

provide continuous coverage, but this induces a trade-off by reducing the number satellites and 

revisits. Figures 3.7 and 3.8 outline the constellation and multi-objective function solution spaces 
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for targets at 45° latitude (notice that the axes of inclination and altitude have been reversed to 

view the optimal constellations). 

 

Figure 3.7 CONSTELLATION DESIGN SOLUTION SPACE FOR EARTH TARGET AT 45° LATITUDE 

 

Figure 3.8 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 45° LATITUDE 
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Table 3.5 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 60° LATITUDE 

 

 For targets at 30°, 45°, and 60° latitude there are many similarities in the optimal 

constellation design found. Minimal satellites near 20-30 units, multiple planes, maximized 

altitudes, and inclinations larger than the target latitudes. The minimum fitness values also infer 

the difficulty of each target latitude. Lower latitudes could optimize to the minimal 0.33 values 

whereas higher latitude test cases require larger fitness values inferring more complex designs 

that require performance trade-offs. Figure 3.9 below shows the constellation design solution 

space. Figure 3.10 depicts the multi-objective function solution space 

 

Figure 3.9 CONSTELLATION DESIGN SOLUTION SPACE FOR EARTH TARGET AT 60° LATITUDE 
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Figure 3.10 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 60° LATITUDE 

Table 3.6 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 75° LATITUDE 

 

As target latitude rise the constellation inclination begins to approach 90°. This occurs for 

two reasons, first and foremost the inclination limit is bounded from 0° to 90° and secondly, 

targets travel less distance the closer they get to the poles allowing constellations to maintain 

coverage and revisits with high inclination satellites. Comparing Table 3.5 and Table 3.6 above 
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shows how constellations achieve minimum fitness again for targets at high latitudes with the use 

of maximum satellites on a single plane. The following graph shown in Figure 3.11 showcases 

this effect with higher inclinations and higher altitudes performing better than the rest of the 

constellation solution space. Figure 3.12 depicts a familiar multi-objective fitness function 

breakdown trend where optimal designs are found along the linear correlation between satellite 

and revisits. 

 

Figure 3.11 CONSTELLATION DESIGN SOLUTION SPACE FOR EARTH TARGET AT 75° LATITUDE 
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Figure 3.12 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 75° LATITUDE 

Table 3.7 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 90° LATITUDE 

 

With a target on the Earth’s north pole, the evolutionary genetic algorithm settled on 

multiple optimal constellations that vary greater with altitude. Inclinations stay near 90° to 

achieve sufficient pass time, and most constellations utilize a single plane to achieve full 

coverage. The number of satellites however seems to have oddly converged to 84 units in this 
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test case. This is a pure coincidence that occurred in the ordering of the results. Upon further 

inspection of all optimal constellations (fitness = .033), it was found that constellations with 

more and less satellites can achieve peak performance. Figure 3.13 shows the constellation 

solution space of this scenario where increased performance is clearly influenced by inclination. 

Figure 3.14 again shows the linear correlation between satellites and revisits in the multi-

objective fitness function breakdown. The vertical line represent all the solutions that did not 

have sufficient inclinations to achieve target passes. 

 

Figure 3.13 CONSTELLATION DESIGN SOLUTION SPACE FOR EARTH TARGET AT 90° LATITUDE 
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Figure 3.14 MULTI-OBJECTIVE FITNESS SOLUTION SPACE FOR EARTH TARGET AT 90° LATITUDE 

 

3.2.2. Martian Constellations 

With smaller planets like Mars, constellations will use different orbital parameters and 

organization schemes to achieve optimal performance compared to Earth constellation. Mainly 

attributed to the larger ratio between a planet’s radius and the maximum constellation altitude 

available, Martian constellations can cover larger portions of the planet’s surface by maximizing 

field of view. This effect allows for low inclination constellations around Mars to cover targets at 

higher latitudes compared to Earth. For instance, targets at 15° and 30° latitude can still be 

covered by near zero inclination constellations with maximum altitudes of 1000 km. 

Constellation designs in Tables 3.8 - 3.10 provide a closer look at some optimal solutions for 

Martian targets at 0°, 15°, and 30° latitude. Notice how the inclinations for each target latitude 

will converge towards 0° to rely on the coverage consistency with a single plane. Appendix B 

will contain all of the constellation design and multi-objective solution space scatter plots for 

Martian test cases to avoid redundancy and confusion with the previous section. 
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Table 3.8 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 0° LATITUDE 

 

Table 3.9 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 15° LATITUDE 

 

Table 3.10 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 30° LATITUDE 
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As targets on Mars rise to 30° and 45° latitude the total number of satellites per 

constellation drops significantly due to the reduced number of revisits that cannot be achieved 

with low inclinations. This effect lowers the satellite fitness value while raising the revisit fitness 

value to achieve optimal solutions as seen in Tables 3.10 and 3.11.  

Table 3.11 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 45° LATITUDE 

 

 For targets at 60°, 75°, and 90° latitude, however, the relationship between revisits and 

satellites becomes arbitrary. Each of the following three subcases can achieve optimal fitness by 

increasing or reducing the number of satellites in any given constellation since large satellites 

with max altitudes can exploit large fields of view to provide full coverage. Since Mars is small 

in comparison to Earth, fewer units are required to obtain full coverage, resulting in fluctuating 

constellation sizes. Reference Tables 3.12-3.14 below.  

Table 3.12 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 60° LATITUDE 
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Table 3.13 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 75° LATITUDE 

 

Table 3.14 OPTIMAL CONSTELLATION DESIGNS FOUND FOR MARS TARGET AT 90° LATITUDE 

 

3.2.3. Jupiter Constellations 

Switching to Jupiter, which is volumetrically massive compared to both Earth and Mars, 

optimal constellations were found to closely correlate latitude and inclination to achieve optimal 

coverage performance. Due to the increased ratio between planetary radius and maximum 

constellation altitude of 1000 km, a single satellite’s field of view will cover a significantly 

smaller portion of Jupiter’s surface area compared to Earth or Mars. Table 3.15 shows the 

tradeoff between minimizing number of satellites and obtaining full coverage for an equatorial 

target on Jupiter. 
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Table 3.15 OPTIMAL CONSTELLATION DESIGNS FOUND FOR JUPITER TARGET AT 0° LATITUDE 

 

Table 3.16 OPTIMAL CONSTELLATION DESIGNS FOUND FOR JUPITER TARGET AT 15° LATITUDE 

 

Once target latitudes rise above Jupiter’s equator, full coverage is no longer achievable 

without increasing the number of satellites and simultaneously decreasing revisit performance. 

Since satellites will being to oscillate out of phase when planes are inclined continuous coverage 

requires numerous satellites which will in turn increase fitness values on two fronts. In Table 

3.16 constellation inclination settles above 15° to allow for coverage opportunities before and 

after a satellite reaches its highest latitude in the celestial sphere. This effect can be seen 

throughout constellations covering targets at latitudes 15°, 30°, 45°, 60°, and 75°.  
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Table 3.17 OPTIMAL CONSTELLATION DESIGNS FOUND FOR JUPITER TARGET AT 30° LATITUDE 

 

Table 3.18 OPTIMAL CONSTELLATION DESIGNS FOUND FOR JUPITER TARGET AT 45° LATITUDE 

 

Table 3.19 OPTIMAL CONSTELLATION DESIGNS FOUND FOR JUPITER TARGET AT 60° LATITUDE 

 



46 

 

 Constellations shown in Tables 3.17 - 3.19 depict the most optimal constellations for 

targets on Jupiter’s surface at latitudes 30°, 45°, and 60°. Each of these test cases present a 

unique solution that is unlike the Earth of Martian solutions presented. In these three test cases 

optimization is achieved by foregoing coverage and revisit maximization, and instead 

minimizing the total number of satellites used in the constellations. With a larger planet to orbit 

the number of passes becomes very infrequent at mid-range latitudes, which in turn results in 

reduced coverage. So the multi-objective algorithm compensates by reducing both the number of 

satellites and revisits since better fitness performance can be achieved with minimal satellites.  

Table 3.20 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 75° LATITUDE 

 

 Both 15° and 75° constellations exhibit an odd dichotomy of constellations that can be 

optimized with maximum and minimum satellites. Tables 3.16 and 3.20 show these constellation 

design assortments and their respective fitness break downs.  

In Table 3.21 targets at Jupiter’s north pole are optimized by constellations using 

inclinations of ~90°. By maximizing coverage, and increasing the number of revisits, polar orbit 

constellations should provide the most optimal constellation designs around Jupiter. It should 

also be noted that the top ten results listed below indicate that 84 satellites provide the most 

optimal constellation. However, upon further result inspection it was found that this test case 

could be optimized with any number of satellites if they provided continuous coverage. The 

evolutionary genetic algorithm was merely saturated with optimal results containing 84 satellites. 
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Table 3.21 OPTIMAL CONSTELLATION DESIGNS FOUND FOR EARTH TARGET AT 90° LATITUDE 
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4. CONCLUSION 

4.1. Future Works 

1) Explore mission sensitivity studies by varying constellation limitations and multi-

objective fitness function scope. The results presented in the previous sections provide a 

narrow view into the capabilities of constellation optimization. By reporting on numerous 

mission types with various requirements one could develop a more comprehensive 

constellation guide or universal multi-objective fitness function. 

2) Implement a Pareto-Frontier based optimization scheme with the NSGA-II method or 

similar. The optimization scheme used in this study relied on a pure fitness value 

comparison with three relatively simple objectives. Creating a more complex system that 

relies on multiple fronts could lead to more robust constellation results to be compared by 

the user. 

3) Explore the effects of alternative mutation rates and methods in the evolutionary genetic 

algorithm. Perhaps introducing weighted probability selection for individuals or traits 

based on performance.  

4) Explore the effects of different recombination techniques such as multiple point cross-

over or simple arithmetic recombination with pairs of parent selected traits. The mixture 

of traits could also be changed to reward higher performing individuals of the 

populations. 

5) Alter the spherical trigonometry propagator to evaluate full planetary coverage instead of 

regional coverage. The same calculation techniques could be changed to evaluate 

constellation coverage over an entire planet instead of just a small target or single 

latitude.  

6) Expand the spherical trigonometry propagation capabilities to include elliptical 

constellations. With reduced computations necessary, the spherical trigonometry methods 

outlined in this paper could prove to be an efficient constellation evaluation tool for 

elliptical orbits. Be sure to implement perturbational effects. 

7) Implementation of constellation perturbations. By considering how constellation patterns 

deform or maintain their shape and performance over time could provide insights for 

future constellation designers. 

8) Conduct a gravitational parameter based constellation comparison between planets. The 

results in this study focused on constant constellation limitations to compare planetary 

systems, and the results were based heavily on the ratio between planetary radius and 

maximum altitude. By reworking these test cases to focus on the effects of gravity and 

orbital periods on constellation performance there may be significant conclusions to be 

drawn.  

9) Expand the capabilities of the design tool to allow for multiple targets to be evaluated. 

Many missions rely on multiple ground stations, so determining optimal constellations 

for more complex systems could be of interest. 
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4.2. Conclusions 

Overall, the results presented show a sub-optimal convergence of constellation design. The 

tables presented however do not represent the only optimal solutions. Upon further investigation, 

many of the test cases explored could achieve optimal solutions with a variety of satellites, 

inclinations, and altitudes, but these options were not listed due to MATLAB’s standardized 

outputs. Earth at 90°, for example, does not require 84 satellites to be optimized, there were 

many optimal solutions found with any number of satellites per constellation. The genetic 

algorithm, however, archives all of the solutions to give the user a closer look at the performance 

metrics of each constellation. This in turn provides a partial Pareto-Frontier that can be 

interpreted through the solution spaces shown in the previous section. Users should refer to these 

constellation design solution spaces for insights regarding constellation design trades and 

performance. 

 

4.3. Final Thoughts 

The development and implementation of a mission level constellation design tool was a 

success. From the test cases explored, optimal constellations were achieved by using spherical 

trigonometry, an evolutionary genetic algorithm, and a multi-objective fitness function. The 

results however should not indicate optimal solutions for the given targets in all scenarios. The 

multi-objective function was the main driver for the solutions presented and any modifications or 

change of scope would drastically influence the results. It was found that the performance of two 

objectives used in this study were inversely related and closely tied to the number of satellites in 

each constellation. This aspect drove the solutions to unpredicted optimal convergence. Another 

influential design limitation highlighted was the ratio between planetary radius and maximum 

altitude. By restricting altitudes to less than 1000 km, optimal constellations varied quite a bit for 

each latitude test case on Earth, Mars and Jupiter. 
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APPENDICES 

A. Result Scatter Plots 
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