36 research outputs found

    Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    Get PDF
    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall

    Functional gene analysis suggests different acetogen populations in the Bovine Rumen and Tammar Wallaby Forestomach

    Get PDF
    Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems

    Evaluation of meteorites as habitats for terrestrial microorganisms: results from the Nullarbor Plain, Australia, a Mars analogue site

    Get PDF
    Unambiguous identification of biosignatures on Mars requires access to well-characterized, long-lasting geochemical standards at the planet's surface that can be modified by theoretical martian life. Ordinary chondrites, which are ancient meteorites that commonly fall to the surface of Mars and Earth, have well-characterized, narrow ranges in trace element and isotope geochemistry compared to martian rocks. Given that their mineralogy is more attractive to known chemolithotrophic life than the basaltic rocks that dominate the martian surface, exogenic rocks (e.g., chondritic meteorites) may be good places to look for signs of prior life endemic to Mars. In this study, we show that ordinary chondrites, collected from the arid Australian Nullarbor Plain, are commonly colonized and inhabited by terrestrial microorganisms that are endemic to this Mars analogue site. These terrestrial endolithic and chasmolithic microbial contaminants are commonly found in close association with hygroscopic veins of gypsum and Mg-calcite, which have formed within cracks penetrating deep into the meteorites. Terrestrial bacteria are observed within corrosion cavities, where troilite (FeS) oxidation has produced jarosite [KFe(SO)(OH)]. Where terrestrial microorganisms have colonized primary silicate minerals and secondary calcite, these mineral surfaces are heavily etched. Our results show that inhabitation of meteorites by terrestrial microorganisms in arid environments relies upon humidity and pH regulation by minerals. Furthermore, microbial colonization affects the weathering of meteorites and production of sulfate, carbonate, Fe-oxide and smectite minerals that can preserve chemical and isotopic biosignatures for thousands to millions of years on Earth. Meteorites are thus habitable by terrestrial microorganisms, even under highly desiccating environmental conditions of relevance to Mars. They may therefore be useful as chemical and isotopic “standards” that preserve evidence of life, thereby providing the possibility of universal context for recognition of microbial biosignatures on Earth, Mars and throughout the solar system

    A novel cultivation-based approach for understanding the Miscellaneous Crenarchaeotic Group (MCG) Archaea from sedimentary ecosystems

    Get PDF
    The uncultured miscellaneous crenarchaeotic group (MCG) archaea comprise one of the most abundant microbial groups in the Earth's subsurface environment. However, very little information is available regarding the lifestyle, physiology, and factors controlling the distribution of members of this group. We established a novel method using both cultivation and molecular techniques, including a pre-PCR propidium monoazide treatment, to investigate viable members of the MCG in vitro. Enrichment cultures prepared from estuarine sediment were provided with one of a variety of carbon substrates or cultivation conditions and incubated for 3 weeks. Compared with the samples from time zero, there was an order-of-magnitude increase in the number of MCG 16S rRNA genes in almost all cultures, indicating that MCG archaea are amenable to in vitro cultivation. None of the tested substrates or conditions significantly stimulated growth of MCG archaea more than the basal medium alone; however, glycerol (0.02%) had a significantly inhibitory effect (P < 0.05). Diversity analysis of populations resulting from four culture treatments (basal medium, addition of amino acids, H2-CO2 as the gas phase, or initial aerobic conditions) revealed that the majority of viable MCG archaea were affiliated with the MCG-8 and MCG-4 clusters. There were no significant differences in MCG diversity between these treatments, also indicating that some members of MCG-4 and MCG-8 are tolerant of initially oxic conditions. The methods outlined here will be useful for further investigation of MCG archaea and comparison of substrates and cultivation conditions that influence their growth in vitro

    The geomicrobiology of mining environments

    No full text
    As the global population increases, so does the demand for minerals and energy resources. Demand for some of the major global commodities is currently growing at rates of: copper - 1.6% p.a.(1); iron ore: 1.4% p.a.(2); aluminium - 5% p.a.(3); rare earth elements - 7% p.a.(4), driven not only by population growth in China, India, and Africa, but also by increasing urbanisation and industrialisation globally. Technological advances in renewable energy production and storage, construction materials, transport, and computing could see demand for some of these resources spike by 2600% over the next 25 years under the most extreme demand scenarios(5). Coupled with declining ore grades, this demand means that the global extent of mining environments is set to increase dramatically. Land disturbance attributed to mining was estimated to be 400 000 km(2) in 2007(6), with projected rates of increase of 10 000 km(2) per year(7). This will increase the worldwide extent of mining environments from around 500 000 km(2) at present to 1 330 000 km(2) by 2100, larger than the combined land area of New South Wales and Victoria (1 050 000 km(2)), making them a globally important habitat for the hardiest of microbial life. The extreme geochemical and physical conditions prevalent in mining environments present great opportunities for discovery of novel microbial species and functions, as well as exciting challenges for microbiologists to apply their understanding to solve complex remediation problems

    Small but mighty: microorganisms offer inspiration for mine remediation and waste stabilisation

    No full text
    Understanding the natural microbiological mechanisms that promote iron cycling in iron ore mine environments may provide novel tools for the remediation of the fragile, iron-rich duricrust ecosystems associated with these environments as well as provide a solution for the stabilisation of hillslopes and tailings (waste) dams. A diverse array of microfossils is frequently identified throughout metrescale duricrusts (canga; >50 wt.% Fe) that cap iron ore deposits in Brazil, shedding light on the intimate role of microorganisms in the evolution of these crusts. Nanoscale secondary ion mass spectrometry revealed that carbon and nitrogen biosignatures are occasionally preserved, and typically associated with the cell envelope structures of microfossils. The microfossils are 1-5 mm in length, with filamentous and rod-shaped morphologies commonly preserved1,2. When examined using backscatter electron scanning electron microscopy, canga shows a complex microstructure from repeated dissolution and re-precipitation of iron oxide minerals. Geochronology3, geochemistry4 and microbiology5 provide insights into the past and present-day role of microorganisms in the evolution of canga. These dynamic biogeochemical processes in canga contribute to the continuous formation of new iron cements, preserving some of world's longest-lived continuously exposed surfaces. Harnessing and accelerating the biogeochemical cycling of iron may contribute to the development of novel technologies for mine remediation and waste stabilisation

    Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability

    Get PDF
    Methanothermobacter thermautotrophicus strain AH is a model hydrogenotrophic methanogen, for which extensive biochemical information, including the complete genome sequence, is available. Nevertheless, at the cell membrane lipid level, little is known about the responses of this archaeon to environmental stimuli. In this study, the lipid composition of M. the rmautotrophicus was characterized to verify how this archaeon modulates its cell membrane components during growth phases and in response to hydrogen depletion and nutrient limitation (potassium and phosphate). As opposed to the higher abundance of phospholipids in the stationary phase of control experiments, cell membranes under nutrient, and energy stress were dominated by glycolipids that likely provided a more effective barrier against ion leakage. We also identified particular lipid regulatory mechanisms in M. thermautotrophicus, which included the accumulation of polyprenols under hydrogen-limited conditions and an increased content of sodiated adducts of lipids in nutrient-limited cells. These findings suggest that M. thermautotrophicus intensely modulates its cell membrane lipid composition to cope with energy and nutrient availability in dynamic environments

    Goethite Reduction by a Neutrophilic Member of the Alphaproteobacterial Genus Telmatospirillum

    No full text
    In tropical iron ore regions, biologically mediated reduction of crystalline iron oxides drives ongoing iron cycling that contributes to the stability of surface duricrusts. This represents a biotechnological opportunity with respect to post-mining rehabilitation attempts, requiring re-formation of these duricrusts. However, cultivated dissimilatory iron reducing bacteria typically reduce crystalline iron oxides quite poorly. A glucose-fermenting microbial consortium capable of reducing at least 27 mmol/L goethite was enriched from an iron duricrust region. Metagenome analysis led to the recovery of a metagenome assembled genome (MAG) of an iron reducer belonging to the alphaproteobacterial genus Telmatospirillum. This is the first report of iron reduction within the Telmatospirillum and the first reported genome of an iron-reducing, neutrophilic member of the Alphaproteobacteria. The Telmatospirillum MAG encodes putative metal transfer reductases (MtrA, MtrB) and a novel, multi-heme outer membrane cytochrome for extracellular electron transfer. In the presence of goethite, short chain fatty acid production shifted significantly in favor of acetate rather than propionate, indicating goethite is a hydrogen sink in the culture. Therefore, the presence of fermentative bacteria likely promotes iron reduction via hydrogen production. Stimulating microbial fermentation has potential to drive reduction of crystalline iron oxides, the rate limiting step for iron duricrust re-formation.</p

    Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle

    No full text
    Molecular information suggests that there is a broad diversity of acetogens in the rumen, distinct from any currently isolated acetogens. We combined molecular analysis with enrichment culture techniques to investigate this diversity further. Methane-inhibited, hydrogenotrophic enrichment cultures produced acetate as the dominant end product. Acetyl-CoA synthase gene analysis revealed putative acetogens in the cultures affiliated with the Lachnospiraceae and Ruminococcaceae as has been found in other rumen studies. No formyltetrahydrofolate synthetase genes affiliating with acetogens or with 'homoacetogen similarity' scores >90% were identified. To further investigate the hydrogenotrophic populations in these cultures and link functional gene information with 16S rRNA gene identity, cultures were subcultured quickly, twice, through medium without exogenous hydrogen, followed by incubation without exogenous hydrogen. Comparison of cultures lacking hydrogen and their parent cultures revealed novel Lachnospiraceae and Ruminococcaceae that diminished in the absence of hydrogen, supporting the hypothesis that they were likely the predominant acetogens in the enrichments. Interestingly, a range of Bacteroidetes rrs sequences that demonstrate
    corecore