12 research outputs found

    Environmental quality alters female costs and benefits of evolving under enforced monogamy

    Get PDF
    Background Currently many habitats suffer from quality loss due to environmental change. As a consequence, evolutionary trajectories might shift due to environmental effects and potentially increase extinction risk of resident populations. Nevertheless, environmental variation has rarely been incorporated in studies of sexual selection and sexual conflict, although local environments and individuals’ condition undoubtedly influence costs and benefits. Here, we utilise polyandrous and monogamous selection lines of flour beetles, which evolved in presence or absence of sexual selection for 39 generations. We specifically investigated effects of low vs. standard food quality (i.e. stressful vs. benign environments) on reproductive success of cross pairs between beetles from the contrasting female and male selection histories to assess gender effects driving fitness. Results We found a clear interaction of food quality, male selection history and female selection history. Monogamous females generally performed more poorly than polyandrous counterparts, but reproductive success was shaped by selection history of their mates and environmental quality. When monogamous females were paired with polyandrous males in the standard benign environment, females seemed to incur costs, possibly due to sexual conflict. In contrast, in the novel stressful environment, monogamous females profited from mating with polyandrous males, indicating benefits of sexual selection outweigh costs. Conclusions Our findings suggest that costs and benefits of sexually selected adaptations in both sexes can be profoundly altered by environmental quality. With regard to understanding possible impacts of environmental change, our results further show that the ecology of mating systems and associated selection pressures should be considered in greater detail

    Data from: Lineages evolved under stronger sexual selection show superior ability to invade conspecific competitor populations

    No full text
    Despite limitations on offspring production, almost all multicellular species use sex to reproduce. Sex gives rise to sexual selection, a widespread force operating through competition and choice within reproduction, however, it remains unclear whether sexual selection is beneficial for total lineage fitness, or if it acts as a constraint. Sexual selection could be a positive force because of selection on improved individual condition and purging of mutation load, summing into lineages with superior fitness. On the other hand, sexual selection could negate potential net fitness through the actions of sexual conflict, or because of tensions between investment in sexually selected and naturally selected traits. Here, we explore these ideas using a multigenerational invasion challenge to measure consequences of sexual selection for the overall net fitness of a lineage. After applying experimental evolution under strong versus weak regimes of sexual selection for 77 generations with the flour beetle Tribolium castaneum, we measured the overall ability of introductions from either regime to invade into conspecific competitor populations across eight generations. Results showed that populations from stronger sexual selection backgrounds had superior net fitness, invading more rapidly and completely than counterparts from weak sexual selection backgrounds. Despite comprising only 10% of each population at the start of the invasion experiment, colonizations from strong sexual selection histories eventually achieved near total introgression, almost completely eliminating the original competitor genotype. Population genetic simulations using the design and parameters of our experiment indicate that this invasion superiority could be explained if strong sexual selection had improved both juvenile and adult fitness, in both sexes. Using a combination of empirical and modeling approaches, our findings therefore reveal positive and wide-reaching impacts of sexual selection for net population fitness when facing the broad challenge of invading competitor populations across multiple generations

    Data from: Post-copulatory opportunities for sperm competition and cryptic female choice provide no offspring fitness benefits in externally fertilizing salmon

    No full text
    There is increasing evidence that females can somehow improve their offspring fitness by mating with multiple males, but we understand little about the exact stage(s) at which such benefits are gained. Here, we measure whether offspring fitness is influenced by mechanisms operating solely between sperm and egg. Using externally fertilizing and polyandrous Atlantic salmon (Salmo salar), we employed split-clutch and split-ejaculate in vitro fertilization experiments to generate offspring using designs that either denied or applied opportunities for sperm competition and cryptic female choice. Following fertilizations, we measured 140 days of offspring fitness after hatch, through growth and survival in hatchery and near-natural conditions. Despite an average composite mortality of 61%, offspring fitness at every life stage was near-identical between groups fertilized under the absence versus presence of opportunities for sperm competition and cryptic female choice. Of the 21 551 and 21 771 eggs from 24 females fertilized under monandrous versus polyandrous conditions, 68% versus 67.8% survived to the 100-day juvenile stage; sub-samples showed similar hatching success (73.1% versus 74.3%), had similar survival over 40 days in near-natural streams (57.3% versus 56.2%) and grew at similar rates throughout. We therefore found no evidence that gamete-specific interactions allow offspring fitness benefits when polyandrous fertilization conditions provide opportunities for sperm competition and cryptic female choice

    overlay

    No full text
    Means and standard errors from main invasion assay to overlay onto population genetic simulations

    invasion model FINAL

    No full text
    R code to run population genetic simulations and graphs
    corecore