20 research outputs found

    Optical phonon modes of wurtzite InP

    Get PDF
    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data

    Valence-band splitting energies in wurtzite InP nanowires : Photoluminescence spectroscopy and ab initio calculations

    Get PDF
    We investigated experimentally and theoretically the valence-band structure of wurtzite InP nanowires. The wurtzite phase, which usually is not stable for III-V phosphide compounds, has been observed in InP nanowires. We present results on the electronic properties of these nanowires using the photoluminescence excitation technique. Spectra from an ensemble of nanowires show three clear absorption edges separated by 44 meV and 143 meV, respectively. The band edges are attributed to excitonic absorptions involving three distinct valence-bands labeled: A, B, and C. Theoretical results based on"ab initio" calculation gives corresponding valence-band energy separations of 50 meV and 200 meV, respectively, which are in good agreement with the experimental results

    Carrier thermalization dynamics in single zincblende and wurtzite InP nanowires

    Get PDF
    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole–plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices

    (INVITED)Dispersion-shifted tellurite fibers for nonlinear frequency conversion

    No full text
    International audienceWe report a detailed numerical investigation of step-index tellurite fiber properties based on the careful experimental characterization of refractive indices for two tellurite-glass systems employed in fiber manufacturing. More specifically, our study focuses on two typical step-index configurations, namely weak and strong index differences between core and cladding glasses. We reveal that a wide range of dispersion-shifted features for tellurite fibers can be obtained in the 2-3 μm range combined with small or large effective mode areas. Our work also outlines the potential application of such dispersion-engineered fibers for nonlinear wavelength converters between near-and mid-infrared regions

    Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile

    No full text
    International audienceMicrostructured optical fibers (MOF) can be seen as next generation fiber of significance in advancing the compact optics because of its excellent compatibility in integrated optics. However, the degradation of their physicochemical properties limits their efficiency and lifetime. Atmospheric moisture is responsible for the degradation of amorphous systems especially chalcogenide glasses. In the light of previously reported studies, in order to clarify the aging process continuously evolving in sulfide microstructured optical fiber over time, a detailed investigation of this phenomenon has been conducted. The time-dependent transmission and glass chemical deterioration have been studied for As2S3 MOF with regard to their exposure to different atmospheric conditions. Results show a substantial impact of atmospheric moisture through an interaction with the glass network. Significant improvement has been registered by storing the fibers under dry atmosphere

    Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation

    No full text
    We analyze optical and structural aging in As2S3 microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As2S3 MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process is well confirmed by the good matching between previous experimental results and the reported numerical simulations based on the generalized nonlinear Schrödinger equation
    corecore