1,474 research outputs found

    Investigating Causal Relations between Public Spending and Economic Growth in Europe

    Get PDF
    The link between economic growth and the size of the public sector has fuelled one of the most wide-ranging debates in economic literature and the empirical evidence is far from conclusive. With different techniques that encompass both country-to-country causality analysis with VAR models and standard and grouped panels, we study this relationship for a sample of 25 countries from the 1960s to the present. Our contribution is fundamentally methodological, overcoming several pitfalls of the previous literature, namely, endogeneity, dynamic effects and common patterns. The results do not support the fulfilment of the Wagner''s Law and a negative effect of public size on economic growth is highlighted. La relación entre tamaño del sector público y crecimiento económico ha dado lugar a una ingente literatura, tanto teórica como empírica. Sin embargo, la evidencia está muy lejos de ser concluyente. Este trabajo tiene por objeto investigar dicha relación para una muestra de 25 países europeos desde la década de 1960 hasta la actualidad. A tal efecto, se aplican diversas técnicas que comprenden el análisis de causalidad individual con modelos VAR y modelos de datos de panel, tanto tradicionales como de efectos agrupados. Nuestra contribución es esencialmente metodológica, puesto que permite superar algunos de los principales escollos de la literatura anterior: la endogeneidad, los efectos dinámicos y la omisión de patrones comunes. Los resultados obtenidos no sustentan la ley de Wagner y destacan, para la muestra seleccionada, la existencia de un efecto negativo del tamaño del sector público sobre el crecimiento económico

    Business cycle patterns in European regions

    Get PDF
    The aim of this paper is threefold. First, we analyze the comovements of business cycles in European regions. Second, we date these business cycles and identify clusters of regions with similar business cycle behavior, using Finite Mixture Markov models. Third, we develop a new index to measure within-country homogeneity. We find that comovement among regions is, on average, quite low, although it increased during the convergence process prior to the euro cash and after the onset of the Great Recession. We identify five different groups of European regions. We also find heterogeneity in the size of border effects

    The canonical 8-form on manifolds with holonomy group Spin(9)

    Get PDF
    An explicit expression of the canonical 8-form on a Riemannian manifold with a Spin(9)-structure, in terms of the nine local symmetric involutions involved, is given. The list of explicit expressions of all the canonical forms related to Berger's list of holonomy groups is thus completed. Moreover, some results on Spin(9)-structures as G-structures defined by a tensor and on the curvature tensor of the Cayley planes, are obtained

    Fluorescence in quantum dynamics: accurate spectra require post-mean-field approaches

    Get PDF
    Real time modeling of fluorescence with vibronic resolution entails the representation of the light–matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation—which allows us to decouple these two phenomena by sequentially modeling one after the other—we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light–matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues

    Dissipative equation of motion for electromagnetic radiation in quantum dynamics

    Get PDF
    The dynamical description of the radiative decay of an electronically excited state in realistic many-particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for C2+, B+, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in accord with experimental values of 0.57±0.02, 0.86±0.07, and 1.77–2.5 ns. Hence, the present development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies

    Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array

    Full text link
    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53 per mil at an energy of 1.33 MeV.Comment: 5 pages, 6 figures, preprint version of IEEE Transactions on Nuclear Science paper submitted for the 19th IEEE Real Time Conferenc

    The population of deformed bands in 48^{48}Cr by emission of 8^{8}Be from the 32^{32}S + 24^{24}Mg reaction

    Full text link
    Using particle-γ\gamma coincidences we have studied the population of final states after the emission of 2 α\alpha-particles and of 8^{8}Be in nuclei formed in 32^{32}S+24^{24}Mg reactions at an energy of EL(32S)=130MeV\textrm{E}_{\rm L}(^{32}\textrm{S}) = 130 {\rm MeV}. The data were obtained in a setup consisting of the GASP γ\gamma-ray detection array and the multidetector array ISIS. Particle identification is obtained from the Δ\DeltaE and E signals of the ISIS silicon detector telescopes, the 8^{8}Be being identified by the instantaneous pile up of the Δ\DeltaE and E pulses. γ\gamma-ray decays of the 48^{48}Cr nucleus are identified with coincidences set on 2 α\alpha-particles and on 8^{8}Be. Some transitions of the side-band with Kπ=4K^\pi=4^{-} show stronger population for 8^{8}Be emission relative to that of 2 α\alpha-particles (by a factor 1.51.81.5-1.8). This observation is interpreted as due to an enhanced emission of 8^{8}Be into a more deformed nucleus. Calculations based on the extended Hauser-Feshbach compound decay formalism confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.

    Lifetime measurements in 63^{63}Co and 65^{65}Co

    Get PDF
    Lifetimes of the 9/219/2^-_1 and 3/213/2^-_1 states in 63^{63}Co and the 9/219/2^-_1 state in 65^{65}Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multi-nucleon transfer reactions in inverse kinematics. Gamma rays were measured with the EXOGAM Ge array and the recoiling fragments were fully identified using the large-acceptance VAMOS spectrometer. The E2 transition probabilities from the 3/213/2^-_1 and 9/219/2^-_1 states to the 7/27/2^- ground state could be extracted in 63^{63}Co as well as an upper limit for the 9/217/219/2^-_1\rightarrow7/2^-_1 BB(E2) value in 65^{65}Co. The experimental results were compared to large-scale shell-model calculations in the pfpf and pfg9/2pfg_{9/2} model spaces, allowing to draw conclusions on the single-particle or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical Review

    Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions

    Get PDF
    We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I
    corecore