40 research outputs found

    Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata

    Get PDF
    Sable N, Gaikwad S, Bonde S, Gade A, Rai M. 2012. Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata. Nusantara Bioscience 4: 45-49. In the context of current drive to developed new green technology in nanomaterials, synthesis of nanoparticles is of considerable importance. There has been considerable work done in the field of nanoscience and nanotechnology during the last decade due to the introduction of various protocols for the synthesis of nanoparticles by using plants and microorganisms. Here we firstly report the extracellular phytosynthesis of silver nanoparticles (Ag-NPs) using aquatic plants Hydrilla verticilata. The characterization of the phytosynthesized Ag-NPs was done with the help of UV-Vis spectroscopy, FTIR, Nanoparticle Tracking Analysis (NTA), Zeta potential and SEM. The SEM micrograph revealed the synthesis of polydispersed spherical nanoparticles, with the average size of 65.55 nm. The phytofabricated Ag-NPs can be used in the field of medicine and agriculture, due to their antimicrobial potential

    Review: Mycoendophytes in medicinal plants: Diversity and bioactivities

    Get PDF
    Rai M, Gade A, Rathod D, Dar M, Varma A. 2012. Review: Mycoendophytes in medicinal plants: Diversity and bioactivities. Nusantara Bioscience 4: 86-96. Endophytes are microorganisms that reside in internal tissues of living plants without causing any negative effect. These offer tremendous potential for the exploitation of novel and eco-friendly secondary metabolites used in medicine, the pharmaceutical industry and agriculture. The present review is focused on diversity of endophytes, current national and international bioactive secondary metabolite scenario and future prospects. Endophytic fungi as novel source of potentially useful medicinal compounds are discussed along with the need to search for new and more effective agents from endophytes to combat disease problems

    Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles

    Get PDF
    Eleven different Fusarium species were isolated from various infected plant materials and screened to select a potential species for the synthesis of silver nanoparticles. All the isolates were identified on the basis of cultural and microscopic characteristics using Fusarium identification keys. For the confirmation of preliminary identified isolates of Fusarium species, online BLAST analysis was carried out. All the eleven species demonstrated the ability for synthesis of silver nanoparticles. This was confirmed by UV-Vis spectroscopy, which gave characteristic peak around 420 nm. Further confirmation of silver nanoparticles was carried out using nanoparticles tracking analysis (NTA), zeta potential, photon correlation spectroscopy (PCS), powder X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The smallest size of silver nanoparticles was synthesized by F. oxysporum (3-25 nm) and largest size silver nanoparticles were synthesized by F. solani (3-50 nm).Onze diferentes espécies de Fusarium foram isoladas a partir de vários materiais vegetais infectados e selecionados para escolher uma espécie potencialmente importante para a síntese de nanopartículas de prata. Todos os isolados foram identificados com base nas características de cultivo e microscópicas usando as chaves de identificação de Fusarium. Para a confirmação e identificação preliminar dos isolados de espécies de Fusarium, a análise BLAST on-line foi utilizada. Das espécies isoladas onze mostraram a capacidade para a síntese de nanopartículas de prata. A síntese de nanopartículas de prata foi confirmada por espectroscopia de UV-Vis que monstrou um pico característico em torno de 420 nm. Além disso, a confirmação da síntese de nanopartículas de prata foi realizada utilizando a análise de rastreamento de nanoparticulas (nanoparticle tracking analysis-NTA), medidas de potencial zeta, espectroscopia de correlação de fótons (PCS), difratometria de raios X de pó (XRD), e microscopia eletrônica de transmissão (TEM). As menores nanopartículas de prata foram sintetizadas por F. oxysporum (3-25 nm), enquanto as maiores foram obtidas com F. solani (3-50 nm).19741982Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A study of phylogenetic variations among Indian <i style="mso-bidi-font-style:normal">Phoma tropica </i>species by RAPD-PCR and ITS-rDNA sequencing

    No full text
    187-194The genus <i style="mso-bidi-font-style: normal">Phoma is taxonomically controversial due to its poly and paraphyletic generic phylogenies, and unclear species boundaries. The conventional system of identification is applicable but has its limitations. Phoma tropica Schneider &amp; Boerema is a highly polyphyletic species and has not been much explored. Hence, the present study was attempted to delineate genetic variations among different P. tropica<b style="mso-bidi-font-weight: normal"> species based on randomly amplified polymorphic DNA (RAPD) and internal transcribed spacer rDNA (ITS-rDNA) sequencing methods. The phylogenetic analysis revealed that the P. tropica species were highly polyphyletic and were retrieved into distinct clades. The genetic diversity observed among the P. tropica species may be due to the difference in environmental conditions or due to the different types of host from where the species were isolated. Thus, P. tropica shows potential to evolve relatively quickly and retains considerable genetic variations

    Synthesis Of Silver Nanoparticles By Phoma Gardeniae And In Vitro Evaluation Of Their Efficacy Against Human Disease-causing Bacteria And Fungi.

    No full text
    The authors report the biological synthesis of silver nanoparticles (NPs) by Phoma gardeniae (ITCC 4554). The detection of silver NP formation was done by visual observation, and UV-vis spectrophotometer analysis. Further, these mycogenic silver NPs were characterised by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and nanoparticle tracking and analysis system. The TEM analysis revealed the formation of spherical and polydispersed NPs within the range of 10-30 nm. FTIR analysis confirmed the presence of proteins as capping agents. They also evaluated the antimicrobial activity of silver NPs against Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. They found remarkable inhibition of Escherichia coli followed by Staphylococcus aureus, Candida albicans, Salmonella choleraesuis and Pseudomonas aeruginosa as compared with antibiotics. The main aim of the present study was to synthesise mycogenic silver NPs by P. gardeniae and to evaluate their antimicrobial activity in order to find their potential against human pathogenic microbes.971-7

    Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi

    No full text
    The authors report the biological synthesis of silver nanoparticles (NPs) by Phoma gardeniae (ITCC 4554). The detection of silver NP formation was done by visual observation, and UV-vis spectrophotometer analysis. Further, these mycogenic silver NPs were characterised by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and nanoparticle tracking and analysis system. The TEM analysis revealed the formation of spherical and polydispersed NPs within the range of 10-30 nm. FTIR analysis confirmed the presence of proteins as capping agents. They also evaluated the antimicrobial activity of silver NPs against Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. They found remarkable inhibition of Escherichia coli followed by Staphylococcus aureus, Candida albicans, Salmonella choleraesuis and Pseudomonas aeruginosa as compared with antibiotics. The main aim of the present study was to synthesise mycogenic silver NPs by P. gardeniae and to evaluate their antimicrobial activity in order to find their potential against human pathogenic microbes.92717

    Silver Nanoparticles: Novel Antimicrobial Agent Synthesized from an Endophytic Fungus Pestalotia sp. Isolated from Leaves of Syzygium cumini (L)

    No full text
    We report the extracellular synthesis of silver nanoparticles using an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L) and their antibacterial activity against human pathogenic bacteria viz. Staphylococcus aureus (ATCC-25923) and Salmonella typhi (ATCC-51812) alone and in combination with commercially available antibiotics. Detection of synthesized silver nanoparticles was carried out using UV-Visible spectrophotometer analysis, which showed a peak at 415 nm indicating the formation of nanoparticles. Further characterization includes the Fourier Transform Infra-Red spectroscopic analysis for the detection of proteins as capping agents on nanoparticles. Nanoparticle Tracking and analysis (LM 20) and TEM analysis confirmed the formation of spherical and polydispersed nanoparticles in the range of 10-40 nm having average size of 12.40 nm.Biologically synthesized silver nanoparticles showed significant antibacterial activity but their efficacy was increased in combination of antibiotics like gentamycin and sulphamethizole. Silver nanoparticles in combination with gentamycin showed maximum activity (30 mm) against S. aureus followed by sulphamethizole (25 mm). Similar results were reported in case of S. typhi where silver nanoparticles in combination with gentamycin (28 mm) showed more activity than combination of silver nanoparticles and sulphamethizole (24 mm).Biosynthetic approach using an endophytic fungus is a novel way towards the development of safe, economically viable and green method for the synthesis of silver nanoparticles and thus synthesized silver nanoparticles can be used in antibacterial formulations
    corecore