4 research outputs found

    Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude

    Get PDF
    Aim: We studied global variation in beta diversity patterns of lake macrophytes using regional data from across the world. Specifically, we examined 1) how beta diversity of aquatic macrophytes is partitioned between species turnover and nestedness within each study region, and 2) which environmental characteristics structure variation in these beta diversity components.  Location: Global  Methods: We used presence-absence data for aquatic macrophytes from 21 regions distributed around the world. We calculated pairwise-site and multiple-site beta diversity among lakes within each region using Sørensen dissimilarity index and partitioned it into turnover and nestedness coefficients. Beta regression was used to correlate the diversity coefficients with regional environmental characteristics. Results: Aquatic macrophytes showed different levels of beta diversity within each of the 21 study regions, with species turnover typically accounting for the majority of beta diversity, especially in high-diversity regions. However, nestedness contributed 30-50% of total variation in macrophyte beta diversity in low-diversity regions. The most important environmental factor explaining the three beta diversity coefficients (total, species turnover and nestedness) was altitudinal range, followed by relative areal extent of freshwater, latitude and water alkalinity range. Main conclusions: Our findings show that global patterns in beta diversity of lake macrophytes are caused by species turnover rather than by nestedness. These patterns in beta diversity were driven by natural environmental heterogeneity, notably variability in altitudinal range (also related to temperature variation) among regions. In addition, a greater range in alkalinity within a region, likely amplified by human activities, was also correlated with increased macrophyte beta diversity. These findings suggest that efforts to conserve aquatic macrophyte diversity should primarily focus on regions with large numbers of lakes that exhibit broad environmental gradients.

    Leachates from helophyte leaf-litter enhance nitrogen removal from wastewater treatment plant effluents

    No full text
    Bioengineering techniques are currently used in a wide variety of wastewater treatment systems. Aquatic plants (i.e., helophytes) used in these techniques reduce excess nitrogen (N) from water column via assimilation. Moreover, leachates from plant leaf-litter can serve as an additional source of labile dissolved organic matter (DOM), which can promote aerobic respiration and N removal via denitrification. We tested the influence of leaf-litter leachates from Iris pseudacorus and Phragmites australis on the structure and activity of freshwater biofilms grown in flumes fed by effluent from a wastewater treatment plant (WWTP). The responses of the epilithic biofilm to the inputs of leaf-litter leachates were compared to those measured using a brewery byproduct rich in sugars and to the WWTP effluent water (i.e., control). All DOM sources significantly enhanced aerobic respiration and denitrification of the biofilm when compared to the controls, with increases in total microbial abundance but not in denitrifier abundance. The results suggest that metabolic activity of biofilms may be limited by bioavailability of DOM in WWTP effluent; and leaf-litter leachates of helophytes used in bioengineering techniques could alleviate this limitation by enhancing microbial N and C uptake.Fil: Ribot, Miquel. Consejo Superior de Investigaciones Científicas; EspañaFil: Cochero, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Vaessen, Timothy N.. Universidad de Barcelona; EspañaFil: Bernal, Susana. Consejo Superior de Investigaciones Científicas; EspañaFil: Bastias, Elliot. Consejo Superior de Investigaciones Científicas; EspañaFil: Gacia, Esperanca. Consejo Superior de Investigaciones Científicas; EspañaFil: Sorolla, Albert. Consejo Superior de Investigaciones Científicas; EspañaFil: Sabater, Francesc. Universidad de Barcelona; EspañaFil: Martí, Eugenia. Consejo Superior de Investigaciones Científicas; Españ

    Microorganisms in sand filters for on-site wastewater treatment

    Get PDF
    We studied community-environment relationships of lake macrophytes at two metacommunity scales using data from 16 regions across the world. More specifically, we examined (a) whether the lake macrophyte communities respond similar to key local environmental factors, major climate variables and lake spatial locations in each of the regions (i.e., within-region approach) and (b) how well can explained variability in the community-environment relationships across multiple lake macrophyte metacommunities be accounted for by elevation range, spatial extent, latitude, longitude, and age of the oldest lake within each metacommunity (i.e., across-region approach). In the within-region approach, we employed partial redundancy analyses together with variation partitioning to investigate the relative importance of local variables, climate variables, and spatial location on lake macrophytes among the study regions. In the across-region approach, we used adjusted R-2 values of the variation partitioning to model the community-environment relationships across multiple metacommunities using linear regression and commonality analysis. We found that niche filtering related to local lake-level environmental conditions was the dominant force structuring macrophytes within metacommunities. However, our results also revealed that elevation range associated with climate (increasing temperature amplitude affecting macrophytes) and spatial location (likely due to dispersal limitation) was important for macrophytes based on the findings of the across-metacommunities analysis. These findings suggest that different determinants influence macrophyte metacommunities within different regions, thus showing context dependency. Moreover, our study emphasized that the use of a single metacommunity scale gives incomplete information on the environmental features explaining variation in macrophyte communities
    corecore