13 research outputs found

    Pathogen-Responsive Expression of Glycosyltransferase Genes UGT73B3 and UGT73B5 Is Necessary for Resistance to Pseudomonas syringae pv tomato in Arabidopsis

    No full text
    The genome sequencing of Arabidopsis (Arabidopsis thaliana) has revealed that secondary metabolism plant glycosyltransferases (UGTs) are encoded by an unexpectedly large multigenic family of 120 members. Very little is known about their actual function in planta, in particular during plant pathogen interactions. Among them, members of the group D are of particular interest since they are related to UGTs involved in stress-inducible responses in other plant species. We provide here a detailed analysis of the expression profiles of this group of Arabidopsis UGTs following infection with Pseudomonas syringae pv tomato or after treatment with salicylic acid, methyljasmonate, and hydrogen peroxide. Members of the group D displayed distinct induction profiles, indicating potential roles in stress or defense responses notably for UGT73B3 and UGT73B5. Analysis of UGT expression in Arabidopsis defense-signaling mutants further revealed that their induction is methyljasmonate independent, but partially salicylic acid dependent. T-DNA tagged mutants (ugt73b3 and ugt73b5) exhibited decreased resistance to P. syringae pv tomato-AvrRpm1, indicating that expression of the corresponding UGT genes is necessary during the hypersensitive response. These results emphasize the importance of plant secondary metabolite UGTs in plant-pathogen interactions and provide foundation for future understanding of the exact role of UGTs during the hypersensitive response

    Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites

    No full text
    International audienceChytrids are ubiquitous fungal parasites in aquatic ecosystems, infecting representatives of all major phytoplankton groups. They repack carbon from inedible phytoplankton hosts into easily ingested chytrid propagules (zoospores), rendering this carbon accessible to zooplankton. Grazing on zoospores may circumvent bottlenecks in carbon transfer imposed by the dominance of inedible or poorly nutritious phytoplankton (mycoloop). We explored qualitative aspects of the mycoloop by analysing lipid profiles (fatty acids, sterols) of two chytrids infecting two major bloom-forming phytoplankton taxa of contrasting nutritional value: the diatom Asterionella formosa and the filamentous cyanobacterium Planktothrix agardhii. The polyunsaturated fatty acid composition of chytrids largely reflected that of their hosts, highlighting their role as conveyors of otherwise inaccessible essential lipids to higher trophic levels. We also showed that chytrids are capable of synthesizing sterols, thus providing a source of these essential nutrients for grazers even when sterols are absent in their phytoplankton hosts. Our findings reveal novel qualitative facets of the mycoloop, showing that parasitic chytrids, in addition to making carbon and essential lipids available from inedible sources, also upgrade their host's biochemical composition by producing sterols de novo, thereby enhancing carbon and energy fluxes in aquatic food webs

    Sexual Dimorphism and the Evolution of Sex-Biased Gene Expression in the Brown Alga Ectocarpus

    No full text
    International audienceMales and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male-and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology

    Parallelisable non-invasive biomass, fitness and growth measurement of macroalgae and other protists with nephelometry

    No full text
    International audienceWith the exponential development of algal aquaculture and blue biotechnology, there is a strong demand for simple, inexpensive, high-throughput, quantitative phenotyping assays to measure the biomass, growth and fertility of algae and other marine protists. Here, we validate nephelometry, a method that relies on measuring the scattering of light by particles in suspension, as a non-invasive tool to measure in real-time the biomass of aquatic micro-organisms, such as microalgae, filamentous algae, as well as non-photosynthetic protists. Nephelometry is equally applicable to optic density and chlorophyll fluorescence measurements for the quantification of some microalgae, but outperforms other spectroscopy methods to quantify the biomass of biofilm-forming and filamentous algae, highly pigmented species and non-photosynthetic eukaryotes. Thanks to its insensitivity to the sample's pigmentation, nephelometry is also the method of choice when chlorophyll content varies between samples or time points, for example due to abiotic stress or pathogen infection. As examples, we illustrate how nephelometry can be combined with fluorometry or image analysis to monitor the quantity and time-course of spore release in fertile kelps or the progression of symptoms in diseased algal cultures

    The microbiome of the habitat‐forming brown alga Fucus vesiculosus (Phaeophyceae) has similar cross‐Atlantic structure that reflects past and present drivers 1

    Get PDF
    Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.NSF 1442231; NSF 1442106;info:eu-repo/semantics/publishedVersio
    corecore