37 research outputs found

    Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307

    Get PDF
    Background Many cases of cutaneous leishmaniasis (CL) have been recorded in the Jenin District based on their clinical appearance. Here, their parasites have been characterized in depth. Methods Leishmanial parasites isolated from 12 human cases of CL from the Jenin District were cultured as promastigotes, whose DNA was extracted. The ITS1 sequence and the 7SL RNA gene were analysed as was the kinetoplast minicircle DNA (kDNA) sequence. Excreted factor (EF) serotyping and multilocus enzyme electrophoresis (MLEE) were also applied. Results This extensive characterization identified the strains as Leishmania tropica of two very distinct sub-types that parallel the two sub-groups discerned by multilocus microsatellite typing (MLMT) done previously. A high degree of congruity was displayed among the results generated by the different analytical methods that had examined various cellular components and exposed intra-specific heterogeneity among the 12 strains. Three of the ten strains subjected to MLEE constituted a new zymodeme, zymodeme MON-307, and seven belonged to the known zymodeme MON-137. Ten of the 15 enzymes in the profile of zymodeme MON-307 displayed different electrophoretic mobilities compared with the enzyme profile of the zymodeme MON-137. The closest profile to that of zymodeme MON-307 was that of the zymodeme MON-76 known from Syria. Strains of the zymodeme MON-307 were EF sub-serotype A2 and those of the zymodeme MON-137 were either A9 or A9B4. The sub-serotype B4 component appears, so far, to be unique to some strains of L. tropica of zymodeme MON-137. Strains of the zymodeme MON-137 displayed a distinctive fragment of 417 bp that was absent in those of zymodeme MON-307 when their kDNA was digested with the endonuclease RsaI. kDNA-RFLP after digestion with the endonuclease MboI facilitated a further level of differentiation that partially coincided with the geographical distribution of the human cases from which the strains came. Conclusions The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector

    Drug Susceptibility in Leishmania Isolates Following Miltefosine Treatment in Cases of Visceral Leishmaniasis and Post Kala-Azar Dermal Leishmaniasis

    Get PDF
    Resistance to antimonials has emerged as a major hurdle to the treatment and control of VL and led to the introduction of Miltefosine as first line treatment in the Indian subcontinent. MIL is an oral drug with a long half-life, and it is feared that resistance may emerge rapidly, threatening control efforts under the VL elimination program. There is an urgent need for monitoring treatment efficacy and emergence of drug resistance in the field. In a set of VL/PKDL cases recruited for MIL treatment, we observed comparable drug susceptibility in pre- and post-treatment isolates from cured VL patients while MIL susceptibility was significantly reduced in isolates from VL relapse and PKDL cases. The PKDL isolates showed higher tolerance to MIL as compared to VL isolates. Both VL and PKDL isolates were uniformly susceptible to PMM. MIL transporter genes LdMT/LdRos3 were previously reported as potential resistance markers in strains in which MIL resistance was experimentally induced. The point mutations and the down-regulated expression of these transporters observed in vitro could, however, not be verified in natural populations of parasites. LdMT/LdRos3 genes therefore, do not appear to be suitable markers so far for monitoring drug susceptibility in clinical leishmanial isolates

    First Molecular Epidemiological Study of Cutaneous Leishmaniasis in Libya

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by protozoan parasites of the genus Leishmania. The disease is characterized by the formation of chronic skin lesions followed by permanent scars and deformation of the infected area. It is distributed in many tropical and subtropical countries with more than 2 million cases every year. During the past few years CL has emerged as a major public health problem in Libya. So far, diagnosis was based on clinical symptoms and microscopic observation of parasites. Disease outbreaks were not investigated and the causative leishmanial species of CL were not identified so far. Our study indicates the presence of two coexisting species: Leishmania major and Leishmania tropica. These results are crucial in order to provide accurate treatment, precise prognosis and appropriate public health control measures. The recent armed conflict in Libya that ended with the Gadhafi regime collapse on October 2011 has affected all aspects of the life in the country. In this study we discussed multiple risk factors that could be associated with this conflict and present major challenges that should be considered by local and national health authorities for evaluating the CL burden and highlighting priority actions for disease control

    Comparative Microsatellite Typing of New World Leishmania infantum Reveals Low Heterogeneity among Populations and Its Recent Old World Origin

    Get PDF
    Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe

    Specification of blood meals ingested by female sand flies caught in Palestinian foci and identification of their concomitant leishmanial infections.

    No full text
    Since leishmaniases are zoonotic vector-borne diseases transmitted through the bites of infected female sand flies, identification of the sources of imbibed blood meals and the detection and identification of leishmanial DNA in them are important in discerning animal reservoirs, clarifying the epidemiology and facilitating control of local leishmaniases. CDC light traps, aspirators and sticky paper traps were used to collect sand flies in four Palestinian foci of both, CL and VL. Phlebotomine species identification was based on morphological keys. Female specimens were screened to detect and identify leishmanial infections, using kDNA-PCR and ITS1-PCR, and engorged female specimens were analyzed to identify the origin of their blood meals, using an RDB blood meal assay based on the amplification of the cytochrome b gene (cytb) of vertebrate mitochondrial DNA (mtDNA). Twenty sand fly species, 11 of the genus Phlebotomus and nine the genus Sergentomyia, were identified. The most abundant species was Ph. papatasi (33.7%), followed by Ph. sergenti (21%). Among the 691 female sand fly specimens, 18.5% (128/691) were positive for leishmanial DNA, using the kDNA-PCR and 6.4% (44/691) were positive using the ITS1-PCR. DNA from parasites of the genus Leishmania was identified in only 1.5% of the infected sand flies. That of Leishmania tropica parasites was detected in six female specimens of Ph. sergenti and that of L. major parasites in two female specimens of Ph. papatasi. Interestingly, two engorged females of the species Se. (Neophlebotomus) sp. were positive for L. tropica DNA. Ninety engorged female sand flies of Ph. papatasi and 104 of Ph. sergenti had fed on a large variety of vertebrate hosts such as humans, hyraxes, rats, cows, goats and birds. Regarding blood-meals showing a mixture from different species of animal host, hyrax and rat blood was revealed in 8/104 (7.7%) females of Ph. sergenti. Detection of hyrax blood in engorged female sand flies of the species Ph. sergenti supports the role of hyraxes being a potential reservoir of L. tropica in Palestinian regions. Rat blood meals might be significant since a few strains L. tropica and L. infantum were isolated from rats. Further studies must be undertaken before conclusions could be drawn

    Development of assays using hexokinase and phosphoglucomutase gene sequences that distinguish strains of Leishmania tropica from different zymodemes and microsatellite clusters and their application to Palestinian foci of cutaneous leishmaniasis.

    Get PDF
    BACKGROUND/OBJECTIVES: Palestinian strains of L.tropica characterized by multilocus enzyme electrophoresis (MLEE) fall into two zymodemes, either MON-137 or MON-307. METHODOLOGY/PRINCIPLE FINDINGS: Assays employing PCR and subsequent RFLP were applied to sequences found in the Hexokinase (HK) gene, an enzyme that is not used in MLEE, and the Phosphoglucomutase (PGM) gene, an enzyme that is used for MLEE, to see if they would facilitate consigning local strains of L.tropica to either zymodeme MON-137 or zymodeme MON-307. Following amplification and subsequent double digestion with the restriction endonucleases MboI and HaeIII, variation in the restriction patterns of the sequence from the HK gene distinguished strains of L.tropica, L.major and L.infantum and also exposed two genotypes (G) among the strains of L.tropica: HK-LtG1, associated with strains of L.tropica of the zymodemes MON-137 and MON-265, and HK-LtG2, associated with strains of L.tropica of the zymodemes MON-307, MON-288, MON-275 and MON-54. Following amplification and subsequent digestion by the restriction endonuclease MboI, variation in the sequence from the PGM gene also exposed two genotypes among the strains of L.tropica: PGM-G1, associated only with strains of L.tropica of the zymodeme MON-137; and PGM-G2, associated with strains of L.tropica of the zymodemes MON-265, MON-307, MON-288, MON-275 and MON-54, and, also, with six strains of L.major, five of L.infantum and one of L.donovani. The use of the HK and PGM gene sequences enabled distinction the L.tropica strains of the zymodeme MON-137 from those of the zymodeme MON-265. This genotyping system 'correctly' identified reference strains of L.tropica of known zymodemal affiliation and also from clinical samples, with a level of sensitivity down to <1 fg in the case of the former and to 1 pg of DNA in the case of the latter. CONCLUSIONS/SIGNIFICANCE: Both assays proved useful for identifying leishmanial parasites in clinical samples without resource to culture and MLEE

    The genome of leishmania adleri from a mammalian host highlights chromosome fission in sauroleishmania

    Get PDF
    Control of pathogens arising from humans, livestock and wild animals can be enhanced by genomebased investigation. Phylogenetically classifying and optimal construction of these genomes using short sequence reads are key to this process. We examined the mammal-infecting unicellular parasite Leishmania adleri belonging to the lizard-infecting Sauroleishmania subgenus. L. adleri has been associated with cutaneous disease in humans, but can be asymptomatic in wild animals. We sequenced, assembled and investigated the L. adleri genome isolated from an asymptomatic Ethiopian rodent ( MARV/ET/75/HO174) and verified it as L. adleri by comparison with other Sauroleishmania species. Chromosome-level scaffolding was achieved by combining reference-guided with de novo assembly followed by extensive improvement steps to produce a final draft genome with contiguity comparable with other references. L. tarentolae and L. major genome annotation was transferred and these gene models were manually verified and improved. This first high-quality draft Leishmania adleri reference genome is also the first Sauroleishmania genome from a non-reptilian host. Comparison of the L. adleri HO174 genome with those of L. tarentolae Parrot-TarII and lizard-infecting L. adleri RLAT/KE/1957/SKINK-7 showed extensive gene amplifications, pervasive aneuploidy, and fission of chromosomes 30 and 36. There was little genetic differentiation between L. adleri extracted from mammals and reptiles, highlighting challenges for leishmaniasis surveillance

    Involving Students in their own learning: The Experience of a first year Curriculum innovation

    No full text
    Irish school leavers in the main show a high level of satisfaction with their basic education; reading, writing and a calculation skills (Hannan and Shorthall, 1991). The level of satisfaction with personal and social development, preparation for work and other adult roles however fall short of the targets reached by basic education. There is no doubt though that since Hannan and Shorthall’s research in 1991, much has been done in Irish schools to improve students and to help them grow not only academically, but also socially. Innovations include programmes such as Transition Year, Leaving Certificate Vocational, Civic Social and Political Education and perhaps most importantly the Junior Certificat
    corecore