476 research outputs found

    Estimating Queen Conch (Strombus gigas) home ranges using acoustic telemetry: implications for the design of marine fishery reserves

    Get PDF
    Marine reserves (MRs) may function as a vital tool in the conservation and management of marine resources if source populations are managed for the benefit of those downstream. Consequently, it is critical to evaluate the home range of marine animals to ensure that MRs are large enough to protect source populations. We used acoustic telemetry to study movements of adult queen conch (Strombus gigas) within aggregations at two sites in the Florida Keys from June 1997 through July 1998. A total of 68 conch were tagged and tracked for up to one year. Latitude and longitude of each conch were recorded biweekly and data used to estimate the minimum speed, degree of site fidelity, and home range of each animal. Conch showed significantly greater displacement/ time during the summer. There were no significant differences in movement rate, site fidelity, or size of home range between males and females. Mean home range was 5.98 ha. Based on estimated home ranges of the aggregations, the size and location of the existing reserves at these two sites were inadequate to protect the conch aggregations should the fishery reopen

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140ÎĽ\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01ÎĽHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    TomograPy: A Fast, Instrument-Independent, Solar Tomography Software

    Full text link
    Solar tomography has progressed rapidly in recent years thanks to the development of robust algorithms and the availability of more powerful computers. It can today provide crucial insights in solving issues related to the line-of-sight integration present in the data of solar imagers and coronagraphs. However, there remain challenges such as the increase of the available volume of data, the handling of the temporal evolution of the observed structures, and the heterogeneity of the data in multi-spacecraft studies. We present a generic software package that can perform fast tomographic inversions that scales linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models: TomograPy (http://nbarbey.github.com/TomograPy/), an open-source software freely available on the Python Package Index. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors. We describe the main features of the code and show three practical examples of multi-spacecraft tomographic inversions using STEREO/EUVI and STEREO/COR1 data. Static and smoothly varying temporal evolution models are presented.Comment: 21 pages, 6 figures, 5 table

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    Revealing Bell's Nonlocality for Unstable Systems in High Energy Physics

    Get PDF
    Entanglement and its consequences - in particular the violation of Bell inequalities, which defies our concepts of realism and locality - have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson--antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated "dynamical" nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and CP violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson-antimeson systems.Comment: 6 pages, 3 figure

    2D and 3D Polar Plume Analysis from the Three Vantage Positions of STEREO/EUVI A, B, and SOHO/EIT

    Get PDF
    Polar plumes are seen as elongated objects starting at the solar polar regions. Here, we analyze these objects from a sequence of images taken simultaneously by the three spacecraft telescopes STEREO/EUVI A and B, and SOHO/EIT. We establish a method capable of automatically identifying plumes in solar EUV images close to the limb at 1.01 - 1.39 R in order to study their temporal evolution. This plume-identification method is based on a multiscale Hough-wavelet analysis. Then two methods to determined their 3D localization and structure are discussed: First, tomography using the filtered back-projection and including the differential rotation of the Sun and, secondly, conventional stereoscopic triangulation. We show that tomography and stereoscopy are complementary to study polar plumes. We also show that this systematic 2D identification and the proposed methods of 3D reconstruction are well suited, on one hand, to identify plumes individually and on the other hand, to analyze the distribution of plumes and inter-plume regions. Finally, the results are discussed focusing on the plume position with their cross-section area.Comment: 22 pages, 10 figures, Solar Physics articl

    Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters

    Full text link
    Quantitative helio- and asteroseismology require very precise measurements of the frequencies, amplitudes, and lifetimes of the global modes of stellar oscillation. It is common knowledge that the precision of these measurements depends on the total length (T), quality, and completeness of the observations. Except in a few simple cases, the effect of gaps in the data on measurement precision is poorly understood, in particular in Fourier space where the convolution of the observable with the observation window introduces correlations between different frequencies. Here we describe and implement a rather general method to retrieve maximum likelihood estimates of the oscillation parameters, taking into account the proper statistics of the observations. Our fitting method applies in complex Fourier space and exploits the phase information. We consider both solar-like stochastic oscillations and long-lived harmonic oscillations, plus random noise. Using numerical simulations, we demonstrate the existence of cases for which our improved fitting method is less biased and has a greater precision than when the frequency correlations are ignored. This is especially true of low signal-to-noise solar-like oscillations. For example, we discuss a case where the precision on the mode frequency estimate is increased by a factor of five, for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a proper treatment of the frequency correlations does not provide any significant improvement; nevertheless we confirm that the mode frequency can be measured from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue "Helioseismology, Asteroseismology, and MHD Connections
    • …
    corecore