147 research outputs found

    Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    Get PDF
    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA

    Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    Get PDF
    We present infrared aperture synthesis maps produced with the upgraded IOTA interferometer. Michelson interferograms on the close binary system Capella (Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to determine the relative position of the binary components with milliarcsecond (mas) precision and to track their movement along the approx. 14 degree arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different Hybrid Mapping and Bispectrum Fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10 and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas and Theta_Ab=5.8 +/- 0.8 mas. To improve the u, v-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21

    Infrared studies of the Be star X Per

    Full text link
    Photometric and spectroscopic results are presented for the Be star X Per/HD 24534 from near-infrared monitoring in 2010-2011. The star is one of a sample of selected Be/X-ray binaries being monitored by us in the near-IR to study correlations between their X ray and near-IR behaviour. Comparison of the star's present near-IR magnitudes with earlier records shows the star to be currently in a prominently bright state with mean J, H, K magnitudes of 5.49, 5.33 and 5.06 respectively. The JHK spectra are dominated by emission lines of HeI and Paschen and Brackett lines of HI. Lines of OI 1.1287 and 1.3165 micron are also present and their relative strength indicates, since OI 1.1287 is stronger among the two lines, that Lyman beta fluorescence plays an important role in their excitation. Recombination analysis of the HI lines is done which shows that the Paschen and Brackett line strengths deviate considerably from case B predictions. These deviations are attributed to the lines being optically thick and this supposition is verified by calculating the line center optical depths predicted by recombination theory. Similar calculations indicate that the Pfund and Humphrey series lines should also be expected to be optically thick which is found to be consistent with observations reported in other studies. The spectral energy distribution of the star is constructed and shown to have an infrared excess. Based on the magnitude of the IR excess, which is modeled using a free-free contribution from the disc, the electron density in the disc is estimated and shown to be within the range of values expected in Be star discs.Comment: Accepted for publication in MNRAS, 7 pages, 6 figure

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201

    Third telescope project at the IOTA interferometer

    Get PDF
    The third telescope project to enable phase-closure observations at the IOTA interferometer is well underway, and is anticipated to be completed later this year. For this project, we present the main technical improvements which we have already made or expect to make, including a new VxWorks control system, improved star acquisition cameras, improved siderostat and primary mirror supports, five-axis control of the telescope secondary mirrors, automated control of the long delay line, trihedral retroreflectors, three-beam combination, the PICNIC camera, and fringe packet tracking

    Characterizing closure-phase measurements at IOTA

    Get PDF
    We are working towards imaging the surfaces and circumstellar envelopes of Mira stars in the near-infrared, using the IOTA interferometer and the IONIC integrated-optics 3-beam combiner. In order to study atmospheric structures of these stars, we installed 3 narrow-band filters that subdivide H-band into 3 roughly equal-width sub-bands - a central one for continuum, and 2 adjacent ones to sample Mira star's (mostly water) absorption-bands. We present here our characterization of the IOTA 3-Telescope interferometer for closure-phase measurements with broad and narrow-band filters in the H atmospheric window. This includes characterizing the stability, chromaticity, and polarization effects of the present IOTA optics with the IONIC beam-combiner, and characterizing the accuracy of our closure phase measurements

    Constraining the Exozodiacal Luminosity Function of Main-sequence Stars: Complete Results from the Keck Nuller Mid-infrared Surveys

    Get PDF
    Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near-and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 µm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 µm instrumental bandwidth. Based on the 8-9 µm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (> 3σ) excess: β Leo, β UMa, ζ Lep, and y Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. Astatistical analysis of the measurements further indicates that stars with known far-infrared (y ≥ 70 µm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-ilinfrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid-infrared counterpart points to populations of very hot and small (submicron) grains piling up very close to the sublimation radius. For solar-type stars with no known infrared excess, likely to be the most relevant targets for a future exo-Earth direct imaging mission, we find that their median zodi level is 12±24 zodis and lower than 60 (90) zodis with 95% (99%) confidence, if a lognormal zodi luminosity distribution is assumed

    Physical Orbit for Lambda Virginis and a Test of Stellar Evolution Models

    Get PDF
    Lambda Virginis (LamVir) is a well-known double-lined spectroscopic Am binary with the interesting property that both stars are very similar in abundance but one is sharp-lined and the other is broad-lined. We present combined interferometric and spectroscopic studies of LamVir. The small scale of the LamVir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array (IOTA), allowing us to determine its elements as well as the physical properties of the components to high accuracy. The masses of the two stars are determined to be 1.897 Msun and 1.721 Msun, with 0.7% and 1.5% errors respectively, and the two stars are found to have the same temperature of 8280 +/- 200 K. The accurately determined properties of LamVir allow comparisons between observations and current stellar evolution models, and reasonable matches are found. The best-fit stellar model gives LamVir a subsolar metallicity of Z=0.0097, and an age of 935 Myr. The orbital and physical parameters of LamVir also allow us to study its tidal evolution time scales and status. Although currently atomic diffusion is considered to be the most plausible cause of the Am phenomenon, the issue is still being actively debated in the literature. With the present study of the properties and evolutionary status of LamVir, this system is an ideal candidate for further detailed abundance analyses that might shed more light on the source of the chemical anomalies in these A stars.Comment: 43 Pages, 13 figures. Accepted for publication in Ap

    Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be stars

    Get PDF
    Using the 3-telescope IOTA interferometer on Mt. Hopkins, we report results from the first near-infrared (lambda=1.65 mu) closure-phase survey of Young Stellar Objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 milliarcseconds, expected from generic ``flared disk'' models. Six of fourteen targets showed small, yet statistically-significant, non-zero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, and Natta (DDN). Our data support disks models with curved inner rims because the expected emission appear symmetrically-distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5-10% of light on scales 0.01-0.50 arcsec) around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.Comment: Accepted for publication in Astrophysical Journa
    corecore