116 research outputs found

    Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability

    Get PDF
    Recent studies have suggested that aneuploidy in malignant tumours could be a consequence of centrosome aberrations. Using immunofluorescence analysis with an antibody against Ξ³-tubulin and DNA image cytometry, we measured centrosome aberrations and DNA ploidy patterns in fine-needle aspiration biopsies (FNABs) of 58 breast lesions. Benign lesions did not show any centrosome aberrations. DNA diploid carcinomas showed a mean percentage of cells with centrosomal defects of 2.1%. The aneuploid invasive carcinomas could be divided into two subgroups by their significantly (P=0.0003) different percentage of cells with centrosome aberrations (2.0 and 10.3%, respectively) and their significantly (P=0.0003) different percentage of cells with nonmodal DNA content values determined by the Stemline Scatter Index (SSI), a measure of genomic instability. The percentage of cells with centrosome aberrations demonstrated a positive, linear correlation with the corresponding SSI (r=0.82, P<0.0001) and loss of tissue differentiation (r=0.78, P<0.0001). Our results indicate the percentage of cells with centrosome aberrations as being sufficient to divide the investigated tumours into three significantly different groups: benign lesions with no centrosomal aberrations, and two malignant tumour types with mean values of 2.1 and 9.6% of centrosomal defects, respectively. Together, these results demonstrate that centrosome aberrations correlate with genomic instability and loss of tissue differentiation. Furthermore, this study shows the feasibility of centrosomal analysis in FNAB of the breast and suggests centrosomal aberrations as possessing diagnostic and prognostic value

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of Ξ±, Ξ² and Ξ³ tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Aurora kinase-C-T191D is constitutively active mutant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora kinases (Aurora-A, B and C) belong to a family of conserved serine/threonine kinases which are key regulators of cell cycle progression. Aurora-A and Aurora-B are expressed in somatic cells and involved in cell cycle regulation while aurora-C is meiotic chromosome passenger protein. As Aurora kinase C is rarely expressed in normal somatic cells and has been found over expressed in many cancer lines. It is suggested that Aurora-C-T191D is not hyperactive mutant.</p> <p>Result</p> <p>Aurora-C-T191D variant form was investigated and compared with wild type. The overexpression of Aurora-C-T191D was observed that it behaves like Aurora-C wild type (aurC-WT). Both Aurora-C-T191D and aurC-WT induce abnormal cell division resulting in centrosome amplification and multinucleation in transiently transfected cells as well as in stable cell lines. Similarly, Aurora-C-T191D and aurC-WT formed foci of colonies when grown on soft agar, indicating that a gain of Aurora-C activity is sufficient to transform cells. Furthermore, we reported that NIH-3 T3 stable cell lines overexpressing Aurora-C-T191D and its wild type partner induced tumour formation when injected into nude mice, demonstrating the oncogenic activity of enzymatically active Aurora kinase C. Interestingly enough tumour aggressiveness was positively correlated with the rate of kinase activity, making Aurora-C a potential anti-cancer therapeutic target.</p> <p>Conclusion</p> <p>These findings proved that Aurora C-T191D is not hyperactive but is constitutively active mutant.</p

    Aurora-A/STK15/BTAK overexpression induces centrosome amplification, chromosomal instability, and transformation in human urothelial cells

    Get PDF
    Aurora-A/STK15/BTAK kinase encoding gene, located on chromosome 20q13, is frequently amplified and overexpressed in human cancers. Sen et al. previously demonstrated that Aurora-A amplification and overexpression are associated with aneuploidy and clinically aggressive bladder cancer (J Natl Cancer Inst (2002) 94, 1320-1329). To examine if this association is the direct result of Aurora-A gene amplification and overexpression, an immortalized human urothelial cell line (SV-HUC) was infected with an adenoviral Aurora-A-green fluorescent protein (Ad-Aurora-A-GFP) fusion construct inducing ectopic expression of the resulting fusion protein. Controls included mock-infected and adenoviral-GFP infected cells. Ectopic expression of transduced Aurora-A did not alter the doubling time of the SV-HUC cells but significantly increased the number of cells with multiple centrosomes displaying aneuploidy and increased colony formation in soft agar. This is the first report demonstrating that overexpression of Aurora-A induces centrosome anomalies together with chromosomal instability and malignant transformation-associated phenotypic changes in immortalized human urothelial cells, thus supporting the hypothesis that this gene plays an important role in the development of aggressive bladder cancer

    The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication

    Get PDF
    Emerging evidence suggests that supernumerary centrosomes drive genome instability and oncogenesis. Human T-cell leukaemia virus type I (HTLV-I) is etiologically associated with adult T-cell leukaemia (ATL). ATL cells are aneuploid, but the causes of aneuploidy are incompletely understood. Here, we show that centrosome amplification is frequent in HTLV-I-transformed cells and that this phenotype is caused by the viral Tax oncoprotein. We also show that the fraction of Tax protein that localizes to centrosomes interacts with TAX1BP2, a novel centrosomal protein composed almost entirely of coiled-coil domains. Overexpression of TAX1BP2 inhibited centrosome duplication, whereas depletion of TAX1BP2 by RNAi resulted in centrosome hyperamplification. Our findings suggest that the HTLV-I Tax oncoprotein targets TAX1BP2 causing genomic instability and aneuploidy. Β© 2006 Nature Publishing Group.postprin

    Evolution of Resistance to Aurora Kinase B Inhibitors in Leukaemia Cells

    Get PDF
    Aurora kinase inhibitors are new mitosis-targeting drugs currently in clinical trials for the treatment of haematological and solid malignancies. However, knowledge of the molecular factors that influence sensitivity and resistance remains limited. Herein, we developed and characterised an in vitro leukaemia model of resistance to the Aurora B inhibitor ZM447439. Human T-cell acute lymphoblastic leukaemia cells, CCRF-CEM, were selected for resistance in 4 Β΅M ZM447439. CEM/AKB4 cells showed no cross-resistance to tubulin-targeted and DNA-damaging agents, but were hypersensitive to an Aurora kinase A inhibitor. Sequencing revealed a mutation in the Aurora B kinase domain corresponding to a G160E amino acid substitution. Molecular modelling of drug binding in Aurora B containing this mutation suggested that resistance is mediated by the glutamate substitution preventing formation of an active drug-binding motif. Progression of resistance in the more highly selected CEM/AKB8 and CEM/AKB16 cells, derived sequentially from CEM/AKB4 in 8 and 16 Β΅M ZM447439 respectively, was mediated by additional defects. These defects were independent of Aurora B and multi-drug resistance pathways and are associated with reduced apoptosis mostly likely due to reduced inhibition of the catalytic activity of aurora kinase B in the presence of drug. Our findings are important in the context of the use of these new targeted agents in treatment regimes against leukaemia and suggest resistance to therapy may arise through multiple independent mechanisms

    Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships

    Get PDF
    INTRODUCTION: The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated. METHODS: The expression of APC7 was immunohistochemically investigated in 108 invasive ductal carcinomas of the breast and its relationship with clinicopathologic parameters was examined. The expression of APC7 was defined as positive when the summed scores of staining intensities (0 to 3+) and stained proportions (0 to 3+) exceeded 3+. RESULTS: Positive APC7 expression was less frequent than its negative expression when histologic (P = 0.009) or nuclear grade (P = 0.009), or mitotic number (P = 0.0016) was elevated. The frequency of APC7 negative expression was higher in high Ki-67 or aneuploid groups than in low Ki-67 or diploid groups. CONCLUSION: These data show that loss of APC7 expression is more common in breast carcinoma cases with poor prognostic parameters or malignant characteristics. They therefore suggest that dysregulation of APC activity, possibly through downregulation of APC7, may be associated with tumorigenesis in breast cancer

    Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells

    Get PDF
    Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed Ξ³-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells
    • …
    corecore