66 research outputs found

    Dual Drug-Loaded Biofunctionalized Amphiphilic Chitosan Nanoparticles: Enhanced Synergy between Cisplatin and Demethoxycurcumin against Multidrug-Resistant Stem-Like Lung Cancer Cells

    Get PDF
    Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept which addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, release kinetics may differ between drugs and general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggest preclinical studies using relevant disease models to be justified

    Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bitter gourd (<it>Momordica charantia </it>L.) is a common tropical vegetable that has been used in traditional or folk medicine to treat diabetes. Wild bitter gourd (WBG) ameliorated metabolic syndrome (MetS) in animal models. We aimed to preliminarily evaluate the effect of WBG supplementation on MetS in Taiwanese adults.</p> <p>Methods</p> <p>A preliminary open-label uncontrolled supplementation trial was conducted in eligible fulfilled the diagnosis of MetS from May 2008 to April 2009. A total of 42 eligible (21 men and 21 women) with a mean age of 45.7 ± 11.4 years (23 to 63 years) were supplemented with 4.8 gram lyophilized WBG powder in capsules daily for three months and were checked for MetS at enrollment and follow-up monthly. After supplementation was ceased, the participants were continually checked for MetS monthly over an additional three-month period. MetS incidence rate were analyzed using repeated-measures generalized linear mixed models according to the intention-to-treat principle.</p> <p>Results</p> <p>After adjusting for sex and age, the MetS incidence rate (standard error, <it>p </it>value) decreased by 7.1% (3.7%, 0.920), 9.5% (4.3%, 0.451), 19.0% (5.7%, 0.021), 16.7% (5.4%, 0.047), 11.9% (4.7%, 0.229) and 11.9% (4.7%, 0.229) at visit 2, 3, 4, 5, 6, and 7 compared to that at baseline (visit 1), respectively. The decrease in incidence rate was highest at the end of the three-month supplementation period and it was significantly different from that at baseline (<it>p </it>= 0.021). The difference remained significant at end of the 4th month (one month after the cessation of supplementation) (<it>p </it>= 0.047) but the effect diminished at the 5th and 6th months after baseline. The waist circumference also significantly decreased after the supplementation (<it>p </it>< 0.05). The WBG supplementation was generally well-tolerated.</p> <p>Conclusion</p> <p>This is the first report to show that WBG improved MetS in human which provides a firm base for further randomized controlled trials to evaluate the efficacy of WBG supplementation.</p

    Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica)

    Get PDF
    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF
    • 

    corecore