1,390 research outputs found

    Morphologic adjustments of actively evolving highly curved neck cutoffs

    Get PDF
    Neck cutoffs and their resultant oxbow lakes are important and prominent features of riverine landscapes. Detailed field-based research focusing on the morphologic evolution of neck cutoffs is currently insufficient to fully characterize cutoff evolution. High-resolution bathymetric data were collected over 3 years for the purpose of determining channel morphology and morphologic change on three actively evolving neck cutoffs. Results indicate the following general trends in morphologic adjustment: (1) a longitudinal bar in the upstream meander limb that develops near the entrance to the abandoned bend; (2) a deep scour hole in the downstream meander limb immediately downstream of the cutoff channel; (3) erosion of the bank opposite the cutoff in the downstream meander limb; (4) a cutoff bar in the downstream meander limb at the junction corner of the cutoff channel and the downstream meander limb; and (5) perching of the exit of the abandoned bend above the cutoff channel due to channel bed incision. The results presented herein were used to develop a conceptual model that depicts the morphologic evolution of highly curving neck cutoffs. The findings of this research are combined with recent analyses of the three-dimensional flow structure through neck cutoffs to provide a mechanistic explanation for the morphodynamics of neck cutoffs. (c) 2019 John Wiley & Sons, Ltd

    Genetic Influences on Incidence and Case-Fatality of Infectious Disease

    Get PDF
    BACKGROUND: Family, twin and adoption studies suggest that genetic susceptibility contributes to familial aggregation of infectious diseases or to death from infections. We estimated genetic and shared environmental influences separately on the risk of acquiring an infection (incidence) and on dying from it (case fatality). METHODS: Genetic influences were estimated by the association between rates of hospitalization for infections and between case-fatality rates of adoptees and their biological full- and half- siblings. Familial environmental influences were investigated in adoptees and their adoptive siblings. Among 14,425 non-familial adoptions, granted in Denmark during the period 1924-47, we selected 1,603 adoptees, who had been hospitalized for infections and/or died with infection between 1977 and 1993. Their siblings were considered predisposed to infection, and compared with non-predisposed siblings of randomly selected 1,348 adoptees alive in 1993 and not hospitalized for infections in the observation period. The risk ratios presented were based on a Cox regression model. RESULTS: Among 9971 identified siblings, 2829 had been hospitalised for infections. The risk of infectious disease was increased among predisposed compared with non-predisposed in both biological (1.18; 95% confidence limits 1.03-1.36) and adoptive siblings (1.23; 0.98-1.53). The risk of a fatal outcome of the infections was strongly increased (9.36; 2.94-29.8) in biological full siblings, but such associations were not observed for the biological half siblings or for the adoptive siblings. CONCLUSION: Risk of getting infections appears to be weakly influenced by both genetically determined susceptibility to infection and by family environment, whereas there appears to be a strong non-additive genetic influence on risk of fatal outcome

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates

    Get PDF
    Contains fulltext : 72659.pdf ( ) (Open Access)Background Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites. Methodology/Principal Findings Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably. Conclusions/Significance Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems.7 p

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    A randomized, double-blind comparison of OROS® hydromorphone and controlled-release morphine for the control of chronic cancer pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-acting opioid formulations are advocated for maintaining pain control in chronic cancer pain. OROS<sup>® </sup>hydromorphone is a sustained-release formulation of hydromorphone that requires dosing once daily to maintain therapeutic concentrations. The objective of this study was to demonstrate the clinical equivalence of immediate-release and sustained-release formulations of hydromorphone and morphine for chronic cancer pain.</p> <p>Methods</p> <p>200 patients with cancer pain (requiring ≤ 540 mg/d of oral morphine) participated in this double-blind, parallel-group trial. Patients were randomized to receive hydromorphone or morphine (immediate-release for 2–9 days, sustained-release for 10–15 days). Efficacy was assessed with the Brief Pain Inventory (BPI), investigator and patient global evaluations, Eastern Cooperative Oncology Group performance status, and the Mini-Mental State Examination. The primary endpoint was the 'worst pain in the past 24 hours' item of the BPI, in both the immediate-release and sustained-release study phases, with treatments deemed equivalent if the 95% confidence intervals (CI) of the between-group differences at endpoint were between -1.5 and 1.5. No equivalence limits were defined for secondary endpoints.</p> <p>Results</p> <p>Least-squares mean differences (95% CI) between groups were 0.2 (-0.4, 0.9) in the immediate-release phase and -0.8 (-1.6, -0.01) in the sustained-release phase (intent-to-treat population), indicating that the immediate-release formulations met the pre-specified equivalence criteria, but that the lower limit of the 95% CI (-1.6) was outside the boundary (-1.5) for the sustained-release formulations. BPI 'pain now PM' was significantly lower with OROS<sup>® </sup>hydromorphone compared with controlled-release morphine (least-squares mean difference [95% CI], -0.77 [-1.49, -0.05]; <it>p </it>= 0.0372). Scores for other secondary efficacy variables were similar between the two sustained-release treatments. At endpoint, > 70% of investigators and patients rated both treatments as good to excellent. The safety profiles of hydromorphone and morphine were similar and typical of opioid analgesics.</p> <p>Conclusion</p> <p>Equivalence was demonstrated for immediate-release formulations of hydromorphone and morphine, but not for the sustained-release formulations of OROS<sup>® </sup>hydromorphone and controlled-release morphine. The direction of the mean difference between the treatments (-0.8) and the out-of-range lower limit of the 95% CI (-1.6) were in favor of OROS<sup>® </sup>hydromorphone.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: NCT0041054</p

    Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient

    Get PDF
    We compared autumn decomposition rates of European alder leaves at four sites along the Lasset–Hers River system, southern France, to test whether changes in litter decomposition rates from upstream (1,300 m elevation) to downstream (690 m) could be attributed to temperature-driven differences in microbial growth, shredder activity, or composition of the shredder community. Alder leaves lost 75–87% of original mass in 57 days, of which 46–67% could be attributed to microbial metabolism and 8–29% to shredder activity, with no trend along the river. Mass loss rates in both fine-mesh (excluding shredders) and coarse-mesh (including shredders) bags were faster at warm, downstream sites (mean daily temperature 7–8°C) than upstream (mean 1–2°C), but the differ- ence disappeared when rates were expressed in heat units to remove the temperature effect. Mycelial biomass did not correlate with mass loss rates. Faster mass loss rates upstream, after temperature correction, evidently arise from more efficient shredding by Nemourid stoneflies than by the Leuctra-dominated assemblage downstream. The influence of water temperature on decomposition rate is therefore expressed both directly, through microbial metabolism, and indirectly, through the structure of shredder commu- nities. These influences are evident even in cold water where temperature variation is small
    corecore