42 research outputs found

    Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent convection-diffusion-reaction equations

    Get PDF
    This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamline-upwind Petrov-Galerkin (SUPG) and local projection stabilization (LPS) methods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) methods and continuous Galerkin-Petrov (cGP) methods. Several numerical tests have been performed to assess the accuracy of combinations of spatial and temporal discretization schemes. Furthermore, the dependence of the results on the stabilization parameters of the spatial discretizations are discussed. Finally the long-time behavior of overshoots and undershoots is investigated

    Numerical studies of higher order variational time stepping schemes for evolutionary Navier--Stokes equations

    Get PDF
    We present in this paper numerical studies of higher order variational time stepping schemes com-bined with finite element methods for simulations of the evolutionary Navier--Stokes equations. In particular, conforming inf-sup stable pairs of finite element spaces for approximating velocity and pressure are used as spatial discretization while continuous Galerkin--Petrov methods (cGP) and discontinuous Galerkin (dG) methods are applied as higher order variational time discretizations. Numerical results for the well-known problem of incompressible flows around a circle will be presented

    Higher order continuous Galerkin--Petrov time stepping schemes for transient convection-diffusion-reaction equations

    Get PDF
    We present the analysis for the higher order continuous Galerkin--Petrov (cGP) time discretization schemes in combination with the one-level local projection stabilization in space applied to time-dependent convection-diffusion-reaction problems. Optimal a-priori error estimates will be proved. Numerical studies support the theoretical results. Furthermore, a numerical comparison between continuous Galerkin--Petrov and discontinuous Galerkin time discretization schemes will be given

    An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics

    Full text link
    We present a three-point iterative method without memory for solving nonlinear equations in one variable. The proposed method provides convergence order eight with four function evaluations per iteration. Hence, it possesses a very high computational efficiency and supports Kung and Traub's conjecture. The construction, the convergence analysis, and the numerical implementation of the method will be presented. Using several test problems, the proposed method will be compared with existing methods of convergence order eight concerning accuracy and basin of attraction. Furthermore, some measures are used to judge methods with respect to their performance in finding the basin of attraction.Comment: arXiv admin note: substantial text overlap with arXiv:1508.0174
    corecore