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Abstract. Standard mixed finite element methods for the incompressible Navier–Stokes equations
that relax the divergence constraint are not robust against large irrotational forces in the momentum
balance and the velocity error depends on the continuous pressure. This robustness issue can be
completely cured by using divergence-free mixed finite elements which deliver pressure-independent
velocity error estimates. However, the construction of H1-conforming, divergence-free mixed finite
element methods is rather difficult. Instead, we present a novel approach for the construction of
arbitrary order mixed finite element methods which deliver pressure-independent velocity errors. The
approach does not change the trial functions but replaces discretely divergence-free test functions in
some operators of the weak formulation by divergence-free ones. This modification is applied to inf-
sup stable conforming and nonconforming mixed finite element methods of arbitrary order in two and
three dimensions. Optimal estimates for the incompressible Stokes equations are proved for the H1

and L2 errors of the velocity and the L2 error of the pressure. Moreover, both velocity errors are
pressure-independent, demonstrating the improved robustness. Several numerical examples illustrate
the results.

Introduction

In incompressible flows with vanishing normal velocities at the boundary, irrotational forces in the momentum
equations are balanced completely by the pressure gradient. Unfortunately, nearly all mixed discretisations [3,15]
for the incompressible Navier–Stokes equations in the primal variables velocity and pressure do not preserve
this property exactly which excites in some flow problems the so-called numerical instability of poor mass
conservation [10, 13, 14, 18, 23]. However, poor mass conservation is just the unwanted companion of an idea
which is usually regarded as a success story: the relaxation of the divergence constraint in mixed methods
for incompressible flows. While this numerical instability is traditionally mitigated by stabilisation techniques
like the grad-div stabilisation [4, 12, 17, 25, 26, 28], a novel strategy was recently proposed in [19]. The key
observation is that stabilisation issues in inf-sup stable mixed methods arise only due to a relaxation of the
divergence constraint in the discrete velocity test functions, and not in the trial functions. Moreover, stabilisation
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issues can be traced back to those forces in the momentum balance which may possess a nontrivial irrotational
part in the sense of the Helmholtz decomposition.

In the easiest case of the incompressible Stokes equations, −ν∆u +∇p = f ,div u = 0, where ν and f denote
the kinematic viscosity and a body force, poor mass conservation can only be triggered by the discretisation of
the body force f , see [19]. The novel stabilisation strategy in [19] consists in a simple replacement of the Galerkin
discretisation

∫
Ω

f · vh dx by a variational crime
∫

Ω
f · Πhvh dx where Πh is a velocity reconstruction operator.

This velocity reconstruction operator has to fulfil two properties: i) Πhvh has to be near to vh, and ii) Πh has to
map discretely divergence-free velocity test functions to divergence-free ones in the sense of H(div; Ω). The main
difference between vh and Πhvh is that for discretely divergence-free test function vh it holds

∫
Ω
∇ψ·Πhvh dx = 0

for all ψ ∈ C∞0 (Ω) while for standard mixed methods it only holds
∫

Ω
∇ψ · vh dx = O(hl+1)|ψ|l+1|vh|1,h where

l denotes the approximation order of the discrete pressure space and | · |1,h is a (maybe discrete) gradient
semi-norm. Note that only the right-hand side of the discretisation is modified, but not the stiffness matrix.

In [19], the theoretical background for using velocity reconstruction operators was presented. This idea was
applied to the first order approximation by the nonconforming Crouzeix–Raviart element [9] in two and three
space dimensions. The corresponding velocity reconstruction operator maps nonconforming Crouzeix–Raviart
velocity test functions to lowest-order Raviart–Thomas vector fields, lifting normal velocities at simplex faces
to vector fields inside of the elements. It was shown that the modified Crouzeix–Raviart element allows for a
pressure-independent a-priori velocity error estimate for the incompressible Stokes equations in the form

‖u− uh‖1,h ≤ C̃uh|u|2

while the classical Crouzeix–Raviart element [9] delivers

‖u− uh‖1,h ≤ Cuh|u|2 +
Cp
ν
h|p|1

which predicts large velocity errors whenever |p|1 is large or ν is small. We remark that the constant C̃u is
slightly larger than Cu due to the additional consistency error by the variational crime [19]. It may be noted
that the first mixed finite element on unstructured 3d grids for the incompressible Stokes equations that allows
for pressure-independent a-priori velocity error estimates was only published in 2005 [29]. Therefore, velocity
reconstruction operators seem to have the potential to significantly simplify the construction of more robust,
pressure-independent velocity approximations.

In this contribution, we demonstrate that this promise is indeed true. We extend the idea of using velocity
reconstruction operators [19] to both nonconforming and conforming mixed finite elements of arbitrary order
in two and three space dimensions [3, 6, 15, 21, 22]. Furthermore, generalising the ideas in [1, 20] we construct
new families of nonconforming mixed finite elements of arbitrary order on rectangular and brick meshes suitable
for velocity reconstruction operators. In all considered cases, the velocity reconstruction operator on simplicial
meshes maps into finite element spaces of Raviart–Thomas type [24,27] and on rectangular and brick meshes into
finite element spaces of Brezzi–Douglas–Marini type [2, 7, 8]. The new discretisation leads to optimal pressure-
independent velocity error estimates in the discrete energy norm. Optimality is also proved for the velocity and
pressure errors in the corresponding L2 norms. We emphasize that in [19] no proof for the optimality of the
velocity L2 error was given which is actually a nontrivial task for this first order method. Finally, we present
some numerical results confirming the theoretical predictions.

Notation. Throughout this paper, C will denote a generic positive constant which is independent of the mesh
size. The Stokes problem will be considered in the domain Ω ⊂ Rd which is assumed to be a polygonal (d = 2)
or polyhedral (d = 3) domain with boundary Γ = ∂Ω. For a measurable d-dimensional subset G of Ω, the usual
Sobolev spaces Wm,p(G) with norm ‖ · ‖m,p,G and semi-norm | · |m,p,G are used. In the case p = 2, we have
Hm(G) = Wm,2(G) and the index p will be omitted. The L2-inner product on G is denoted by (·, ·)G. Note that
the index G will be omitted for G = Ω. This notation of norms, semi-norms, and inner products is also used
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for the vector-valued and tensor-valued cases. For a sufficiently regular (d − 1)-dimensional manifold E ⊂ ∂G
the L2-inner product on E will be denoted by 〈·, ·〉E .

We will denote by Pk(K) the space of all polynomials on K with degree less than or equal to k while Qk(K)
is the space of all polynomials on K with degree less than or equal to k in each variable separately. Furthermore,
let Lα, α ≥ 0, denote the Legendre polynomials on (−1,+1) which are normalised to Lα(1) = 1.

1. Stokes problem and its discretisation

1.1. Weak formulation

We consider the Stokes problem

−ν∆u +∇p = f in Ω, div u = 0 in Ω, u = 0 on Γ, (1)

where f is a given body force, ν is the viscosity, u and p denote the velocity and pressure fields, respectively.
Introducing the spaces V := H1

0(Ω)d and Q := L2
0(Ω), a weak formulation of problem (1) reads:

Find (u, p) ∈ V ×Q such that

ν(∇u,∇v)− (p,div v) + (q, div u) = (f ,v) for all (v, q) ∈ V ×Q. (2)

The Lax–Milgram theorem applied to the subspace of divergence-free functions

W := {v ∈ V : (q,div v) = 0 for all q ∈ Q} (3)

and the inf-sup condition

inf
q∈Q

sup
v∈V

(q,div v)

‖q‖0 |v|1
> 0 (4)

guarantee that there is a unique solution of (2); see [15]. If f = ∇Φ with Φ ∈ H1, we get from (2) by setting
q = 0, v = u ∈W

ν(∇u,∇u) = (∇Φ,u) = −(Φ,div u) = 0 =⇒ u = 0.

This means that an irrotational volume force is completely adsorbed by the pressure.

1.2. Discrete problem and modified formulation

We are given a family Th of shape-regular decompositions of Ω into d-simplices, axiparallel quadrilaterals,
or hexahedra. The diameter of a cell K is denoted by hK . The mesh parameter h describes the maximum
diameter of the cells K ∈ Th.

The global finite element spaces associated with the decomposition Th are given by

P disc
k := {v ∈ L2(Ω) : v|K ∈ Pk(K) for all K ∈ Th}, Pk := P disc

k ∩H1(Ω),

Qdisc
k := {v ∈ L2(Ω) : v|K ∈ Qk(K) for all K ∈ Th}, Qk := Qdisc

k ∩H1(Ω).

Let (Vh, Qh) be a pair of conforming or nonconforming finite element spaces over Th approximating velocity
and pressure. As usual, we will write shortly Vh = Qk and Qh = Pk instead of Vh = (Qk ∩ H1

0(Ω))d and
Qh = (Pk ∩ L2

0(Ω)), respectively. In this paper we will consider only higher order discretisations and fix the
pressure space to be Qh = P disc

k−1 for a fixed k ≥ 2. The case of first order approximation has been already
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studied in [19]. We allow nonconforming finite element spaces Vh which are subspaces of P disc
k′ and Qdisc

k′ for
some k′ ≥ k, respectively, but not of H1(Ω). Such functions belong to the broken H1 space defined by

H̃1(Ω) := {v ∈ L2(Ω) : v|K ∈ H1(K) for all K ∈ Th}

which is equipped with the broken H1-semi-norm

|v|1,h :=

( ∑
K∈Th

|v|21,K

)1/2

.

We define the piecewise gradient ∇h : H̃1(Ω) →
(
L2(Ω)

)d
by (∇hv)|K = ∇(v|K) and similar the piecewise

divergence divh : H̃1(Ω)d → L2(Ω) by (divh v)|K = div(v|K). Note that these definitions coincide on the spaces
H1(Ω) and H1(Ω)d with the standard gradient and divergence, respectively.

The set of all inner element faces E 6⊂ ∂Ω of Th will be denoted by Eh. The diameter of a face E ∈ Eh is
given by hE . We fix for E ∈ Eh a unit normal vector nE . The two cells which share E are denoted by KE and
K ′E such that nE points from KE into K ′E . We define for a piecewise smooth function rh its jump over the face
E as

[rh]E := (rh|KE
)|E − (rh|K′

E
)|E .

We set nE = n for all element faces E ⊂ Γ on the boundary where n is the outer unit normal to Ω.

In order to guarantee existence, uniqueness, and accuracy of solutions of the discrete problem we make the
following abstract assumptions. We consider in Section 3 finite element spaces satisfying all the assumptions
made here.

Assumption A1. The pair (Vh, Qh) fulfils the discrete inf-sup condition, i.e., there exists a positive constant
β such that

inf
qh∈Qh

sup
vh∈Vh

(qh,divh vh)K
‖qh‖0 |vh|1,h

≥ β > 0 (5)

holds uniformly in h.

Assumption A2. There exists an integer r ≥ 0 such that

〈q, [vh]〉E = 0 for all q ∈ Pr(E), E ∈ Eh, 〈q,vh〉E = 0 for all q ∈ Pr(E), E ⊂ Γ (6)

holds for all vh ∈ Vh.

Remark 1.1. Assumption A2 guarantees that the broken H1-semi-norm | · |1,h is a norm on V + Vh, see [9].
Assumption A2 is satisfied for any conforming finite element space Vh ⊂ V.

Assumption A3. The finite element space Vh approximates V of order k, i.e., there exists an interpolation
operator ih : V ∩Hk+1(Ω)d → Vh such that

‖v − ihv‖0,K + hK |v − ihv|1,K ≤ Chk+1
K |v|k+1,K for all v ∈ Hk+1(K)d, K ∈ Th. (7)
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Remark 1.2. The local L2-projections jh : L2(K)→ Pk−1(K), K ∈ Th, satisfy

‖w − jhw‖0,K + hK |w − jhw|1,K ≤ ChkK |w|k,K for all w ∈ Hk(K) (8)

and will sometimes be combined to the global L2-projection jh : L2(Ω)→ P disc
k−1.

Now, the standard Galerkin discretisation reads:

Find (uh, ph) ∈ Vh ×Qh such that

ν(∇huh,∇hvh)− (ph,divh vh) + (qh,divh uh) = (f,vh) (9)

for all (vh, qh) ∈ Vh×Qh. As in the continuous case, the Lax–Milgram theorem can be applied to the subspace
of discretely divergence-free functions

Wh := {vh ∈ Vh : (qh,divh vh) = 0 for all qh ∈ Qh} (10)

which leads to the unique solvability of the pressure-free formulation of the discrete Stokes problem:

Find uh ∈Wh such that ν(∇huh,∇hvh) = (f ,vh) for all vh ∈Wh. (11)

The existence of a unique pressure ph ∈ Qh such that (uh, ph) ∈ Vh×Qh solves (9) follows from Assumption A1.

If again f = ∇Φ with Φ ∈ H1(Ω), we get from (11) by setting vh = uh ∈Wh

ν(∇huh,∇huh) = (∇Φ,uh) =
∑
K∈Th

{〈Φ,uh · nK〉∂K − (Φ,div uh)K} 6= 0,

in general. Note that even in the case of a conforming method, we have

ν(∇uh,∇uh) = −(Φ,div uh) 6= 0,

since Φ 6∈ Qh in general. Following [19], our aim is to modify the finite element method in such a way that the
discrete velocity solution for f = ∇Φ becomes uh = 0.

We introduce the spaces

X := H(div; Ω) = {v ∈ L2(Ω)d : div v ∈ L2(Ω)}, X0 := {v ∈ X : div v = 0},

and recall that functions in X allow normal traces. In particular, we have Green’s formula [3, Lemma 2.1.1.].

Lemma 1.3. For v ∈ H(div; Ω) we can define v · n ∈ H−1/2(Γ) such that

(div v, q) = 〈v · n, q〉Γ − (v,∇q) for all q ∈ H1(Ω). (12)

Assumption A4. There exist an integer s ≥ k − 1 and a finite element space Xh ⊂ X such that

vh · nE
∣∣
E
∈ Ps(E) for all vh ∈ Xh, E ⊂ ∂K, K ∈ Th, (13)

divh vh
∣∣
K
∈ Pk−1(K) for all vh ∈ Xh, K ∈ Th, (14)

〈q, [vh · nE ]〉E = 0 for all q ∈ Ps(E), E ∈ Eh, vh ∈ Xh, (15)

〈q,vh · n〉E = 0 for all q ∈ Ps(E), E ⊂ Γ, vh ∈ Xh. (16)
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Further, we assume that there is an operator Πh : V + Vh → Xh with

(v −Πhv,w)K = 0 for all v ∈ V + Vh, w ∈ Pk−2(K)d, K ∈ Th, (17)

〈(v −Πhv) · nE , q〉E = 0 for all v ∈ V + Vh, q ∈ Ps(E), E ⊂ ∂K, K ∈ Th, (18)

‖Πhv − v‖0,K ≤ ChmK |v|m,K for all v ∈ V + Vh, K ∈ Th, m = 0, 1. (19)

We will see later in Section 3 that the family of Raviart-Thomas spaces RTk−1 for s = k−1 on simplicial meshes
and the family of Brezzi–Douglas–Marini spaces BDMk for s = k on rectangular and hexahedral meshes satisfy
assumption A4.

Following the idea in [19], we consider the modified discrete problem

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh

ν(∇huh,∇hvh)− (ph,divh vh) + (qh,divh uh) = (f ,Πhvh). (20)

2. Error estimates

First we show that the operator Πh maps discretely divergence-free functions into divergence-free functions
in the sense of H(div; Ω). Moreover, the normal component on the domain boundary Γ vanishes in a strong
sense.

Lemma 2.1. Suppose A2 and A4 with r ≥ s ≥ k − 1 ≥ 1. Then, we have

(qh,div Πhvh) = (qh,divh vh)

for all vh ∈ Vh and for all qh ∈ Qh = P disc
k−1 . Furthermore, it holds Πh(Wh) ⊂ X0 and Πhv ·n = 0 on Γ for all

v ∈ V + Vh.

Proof. We obtain for all qh ∈ Qh = P disc
k−1 and all vh ∈Wh by element-wise integration by parts

(qh,div Πhvh) =
∑
K∈Th

(qh,div Πhvh)K =
∑
K∈Th

{〈qh,Πhvh · nK〉∂K − (∇qh,Πhvh)K}

where nK denotes the outward unit normal vector to K. Taking into consideration that qh|E ∈ Pk−1(E) and
∇qh|K ∈ Pk−2(K)d, and applying (17) and (18), we have

(qh,div Πhvh) =
∑
K∈Th

{〈qh,vh · nK〉∂K − (∇qh,vh)K} =
∑
K∈Th

(qh,div vh)K = (qh,divh vh)

for all qh ∈ Qh. Hence, we obtain for vh ∈ Wh that (qh,div Πhvh) = 0 for all qh ∈ Qh = P disc
k−1. Due to

div Πhvh ∈ P disc
k−1 we can set qh = div Πhvh to get div Πhvh = 0 in the sense of H(div; Ω).

We get from (18) and (6) for all E ⊂ Γ, all v ∈ V + Vh, and all q ∈ Ps(E) with r ≥ s

〈Πhv · nE , q〉E = 〈v · nE , q〉E = 〈v, q〉E · nE = 0.

Due to Πhv · nE ∈ Ps(E) we can set q = Πhv · nE to get Πhv · nE = 0 on E ⊂ Γ. �
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Lemma 2.2. Suppose A2 and A4 for r ≥ k − 1 ≥ 1. Let u ∈ Hk+1(Ω)d, p ∈ Hk(Ω), and v ∈ V + Vh. Then, we 

have

|(∆u,Πhv) + (∇u,∇hv)| ≤ C
∑
K∈Th

hkK |u|k+1,K |v|1,K , (21)

|(∇p,Πhv) + (p, divh v)| ≤ C
∑
K∈Th

hkK |p|k,K |v|1,h. (22)

Proof. We add and subtract (∆u,v) to get

(∆u,Πhv) + (∇u,∇hv) = (∆u,Πhv − v) + (∇u,∇hv) + (∆u,v). (23)

The property (17) of Πh : V + Vh → Xh allows to subtract the local L2-projection πKk−2 : L2(K)→ P disc
k−2. We

use (19) to estimate the first term in (23) as follows

|(∆u,Πhv − v)| =

∣∣∣∣∣ ∑
K∈Th

(∆u− πKk−2∆u,Πhv − v)K

∣∣∣∣∣ ≤ C ∑
K∈Th

hk−1
K |∆u|k−1,KhK |v|1,K

≤ C
∑
K∈Th

hkK |u|k+1,K |v|1,K .

The sum of the second and third term in (23) is related to the consistency error of the nonconforming method.
We integrate as in [9] element-wise by parts

(∇u,∇hv) + (∆u,v) =
∑
K∈Th

〈
∂u

∂nK
,v

〉
∂K

=
∑
E∈Eh

〈
∂u

∂nE
, [v]E

〉
E

+
∑
E⊂Γ

〈
∂u

∂nE
,v

〉
E

,

use A2, insert the L2-projection πEk−1 : L2(E)→ Pk−1(E), and apply the estimate [9, Lemma 3]

|(∇u,∇hv) + (∆u,v)| =

∣∣∣∣∣ ∑
K∈Th

∑
E⊂∂K

〈
∂u

∂nE
− πEk−1

∂u

∂nE
,v

〉
E

∣∣∣∣∣ ≤ C ∑
K∈Th

hkK |u|k+1,K |v|1,K .

For proving (22), we first add and subtract (∇p,v) to have

(∇p,Πhv) + (p, divh v) = (∇p,Πhv − v) + (p, divh v) + (∇p,v). (24)

In the first term, we subtract the local L2-projection πKk−2 : L2(K)→ P disc
k−2 resulting in

|(∇p,Πhv − v)| =

∣∣∣∣∣ ∑
K∈Th

(∇p− πKk−2∇p,Πhv − v)K

∣∣∣∣∣ ≤ C ∑
K∈Th

hk−1
K |∇p|k−1,KhK |v|1,K

≤ C
∑
K∈Th

hkK |p|k,K |v|1,K .

The sum of the second and third term in (24) represents again the consistency error of the nonconforming
method. It can be handled as in [9, Lemma 3] by an element-wise integration by parts

(p,divh v) + (∇p,v) =
∑
K∈Th

〈p,v · nK〉∂K =
∑
E∈Eh

〈p, [v]E · nE , 〉E +
∑
E⊂Γ

〈p,v · nE〉E
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and using the L2-projection πEk−1 : L2(E) → Pk−1(E) to get

|(p,divh v) + (∇p,v)| =

∣∣∣∣∣ ∑
K∈Th

∑
E⊂∂K

〈
p− πEk−1p,v · nE

〉
E

∣∣∣∣∣ ≤ C ∑
K∈Th

hkK |p|k,K |v|1,K .

Collecting all estimates, we obtain the statement of the Lemma. �

Theorem 2.3. Let A1-A4 be satisfied for r ≥ s ≥ k− 1 and let the solution (u, p) of (2) belong to Hk+1(Ω)d×
Hk(Ω). Then, the solution (uh, ph) ∈ Vh×Qh of the modified discrete problem (20) satisfies the error estimates

|u− uh|1,h ≤ C

( ∑
K∈Th

h2k
K |u|2k+1,K

)1/2

, (25)

‖jhp− ph‖0 ≤ C

( ∑
K∈Th

h2k
K ν

2|u|2k+1,K

)1/2

, (26)

‖p− ph‖0 ≤ C

( ∑
K∈Th

h2k
K

[
ν2|u|2k+1,K + |p|2k,K

])1/2

. (27)

Proof. Let uh be the solution of the modified discrete problem (20) and vh ∈ Wh arbitrary. Then, we have
wh := uh − vh ∈Wh. Applying the triangle inequality

|u− uh|1,h ≤ |u− vh|1,h + |wh|1,h,

we see that |wh|1,h has to be estimated. Since u and uh are the solution of the continuous and modified discrete
problem, respectively, we get

ν|wh|21,h = ν(∇h(uh − vh),∇hwh) = ν(∇h(u− vh),∇hwh) + ν(∇h(uh − u),∇hwh)

= ν(∇h(u− vh),∇hwh) + (f ,Πhwh)− ν(∇u,∇hwh). (28)

The first term on the right-hand side of (28) is bounded by the Cauchy–Schwarz inequality

ν|(∇h(u− vh),∇hwh)| ≤ ν|u− vh|1,h|wh|1,h,

the second and third term can be bounded by Lemma 2.2 in the following way

(f ,Πhwh)− ν(∇u,∇hwh) = (−ν∆u +∇p,Πhwh)− ν(∇u,∇hwh)

= −ν[(∆u,Πhwh) + (∇u,∇hwh)]

|(f ,Πhwh)− ν(∇u,∇hwh)| ≤ C

( ∑
K∈Th

h2k
K ν

2|u|2k+1,K

)1/2

|wh|1,h.

Note that we used Green’s formula and Lemma 2.1 to show that

(∇p,Πhwh) = 〈p,Πhwh · n〉 − (p,div Πhwh) = 0.
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Taking the infimum over all vh ∈ Wh and using the inf-sup condition as in [15, II (1.16)], we obtain

inf
vh∈Wh

|u− vh|1,h ≤ C inf
vh∈Vh

|u− vh|1,h ≤ C

( ∑
K∈Th

h2k
K |u|2k+1,K

)1/2

,

and end up with estimate (25).

In order to prove (26), we use (20) and f = −ν∆u +∇p to compute for vh ∈ Vh

(jhp− ph,divh vh) = (jhp,divh vh) + (f ,Πhvh)− ν(∇huh,∇hvh)

= (jhp,divh vh) + (∇p,Πhvh)− ν(∆u,Πhvh)− ν(∇huh,∇hvh).

We obtain for the first and the second term

(jhp,divh vh) + (∇p,Πhvh) = (jhp,divh vh)− (p,div Πhvh),

using Lemma 1.3. However, due to div Πhvh ∈ Qh, it holds (p,div Πhvh) = (jhp,div Πhvh) and

(jhp,divh vh) + (∇p,Πhvh) = (jhp,divh vh − div Πhvh) = 0

due to Lemma 2.1. Hence, adding and subtracting −ν(∇u,∇hvh) leads to

(jhp− ph,divh vh) = −ν {(∆u,Πhvh) + (∇u,∇hvh)}+ ν {(∇h(u− uh),∇hvh).}

By the discrete inf-sup stability, we get the estimate

‖jhp− ph‖ ≤
1

β
sup

vh∈Vh

(jhp− ph,divh vh)

|vh|1,h
.

We finally prove (26) using the Cauchy–Schwarz inequality, Lemma 2.2, and (25).
Now, (27) is a simple consequence of the triangle inequality

‖p− ph‖0 ≤ ‖p− jhp‖0 + ‖jhp− ph‖0. (29)

Remark 2.4. The estimate (26) shows that not only the velocity error is pressure-independent. Also, the
discrete pressure is the best approximation in the discrete pressure space, up to an error which is also pressure-
independent.

�

Next we assume that the Stokes problem is H2(Ω)d × H1(Ω)-regular, i.e., there exists for any g ∈ L2(Ω)d a
unique solution (zg, rg) ∈ (V ∩H2(Ω)d)× (Q ∩H1(Ω)) of the problem

Find (zg, rg) ∈ V ×Q such that for all (v, q) ∈ V ×Q

ν(∇v,∇zg)− (rg,div v) + (q, div zg) = (g,v) (30)

satisfying

ν|zg|2 + |rg|1 ≤ C‖g‖0. (31)
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Theorem 2.5. Let A1-A4 be satisfied for r ≥ s ≥ k−1, let the solution (u, p) of (2) belong to Hk+1(Ω)d×Hk(Ω)
and let the Stokes problem be H2(Ω)d ×H1(Ω)-regular. Then, there exists a positive constant C independent of
h such that

‖u− uh‖0 ≤ Chk+1|u|k+1, (32)

holds.

Proof. Using −ν∆zg +∇rg = g, integrating element-wise by parts, and taking into consideration A2, we get

(g,u− uh) = ν(∇h(u− uh),∇zg)− (rg,divh(u− uh))

−
∑
E∈Eh

{〈
ν
∂zg
∂nE

, [u− uh]E

〉
E

− 〈rg, [u− uh]E · nE〉E
}

−
∑
E⊂Γ

{〈
ν
∂zg
∂nE

,u− uh

〉
E

− 〈rg, (u− uh) · nE〉E
}
.

Choosing appropriate interpolations (zg,h, rg,h) ∈Wh×Qh, having in mind that (u, p) and (uh, ph) are solutions
of the continuous and of the modified discrete problems, and applying Green’s theorem and Lemma 2.1 to get
(∇p,Πhzg,h) = 0, we end up with

(g,u− uh) = ν(∇h(u− uh),∇h(zg − zg,h))− (rg − rg,h,divh(u− uh))

+ ν(∇u,∇h(zg,h − zg)) + ν(∆u,Πh(zg,h − zg)) + ν(∆u,Πhzg − zg)]

−
∑
E∈Eh

{〈
ν
∂zg
∂nE

, [u− uh]E

〉
E

− 〈rg, [u− uh]E · nE〉E
}

(33)

−
∑
E⊂Γ

{〈
ν
∂zg
∂nE

,u− uh

〉
E

− 〈rg,u− uh · nE〉E
}
.

Now we estimate term by term. The Cauchy–Schwarz inequality yields for the first and the second term in (33)

ν|(∇h(u− uh),∇h(zg − zg,h)| ≤ C|u− uh|1,h h ν|zg|2 ≤ Ch‖g‖0 |u− uh|1,h,
|(rg − rg,h,div(u− uh))| ≤ Ch|rg|1 |u− uh|1,h ≤ Ch‖g‖0 |u− uh|1,h.

In order to estimate the third and fourth term in (33), we apply Lemma 2.2

ν|(∇u,∇h(zg,h − zg)) + (∆u,Πh(zg,h − zg)| ≤ C
∑
K∈Th

hkK |u|k+1,K ν |zg,h − zg|1,K ≤ Chk+1|u|k+1 ‖g‖0.

The operator Πh satisfies (17), thus we can subtract the L2-projection πKk−2 : L2(K)→ P disc
k−2 and estimate the

fifth term in (33) as follows

ν|(∆u,Πhzg − zg)| = ν|(∆u− πKk−2∆u,Πhzg − zg)| ≤ C
∑
K∈Th

hk−1
K |u|k+1,K h

2
Kν |zg|2,K ≤ Chk+1|u|k+1 ‖g‖0.
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The last two terms in (33) are estimated as in [9, Lemma 3] using the L2-projection πE0 : L2(E) → P0. Since
the ideas are the same, we show only one of the two estimates∣∣∣∣∣ ∑

E∈Eh

{〈
ν
∂zg
∂nE

, [u− uh]E

〉
E

− 〈rg, [u− uh]E · nE〉E
}∣∣∣∣∣

=

∣∣∣∣∣ ∑
E∈Eh

{〈
ν
∂zg
∂nE

− πE0
∂zg
∂nE

, [u− uh]E

〉
E

− 〈rg − πE0 rg, [u− uh]E · nE〉E
}∣∣∣∣∣

≤ C
∑
K∈Th

hK (ν |zg|2,K + |rg|1,K) |u− uh|1,K ≤ Ch |u− uh|1,h ‖g‖0.

Collecting all estimates, we obtain

‖u− uh‖0 = sup
g∈L2

(g,u− uh)

‖g‖0
≤ C

(
hk+1|u|k+1 + h|u− uh|1,h

)
from which the bound (32) follows. �

Remark 2.6. Theorems 2.3 and 2.5 show that the velocity error both in (broken) H1-semi-norm and in L2-norm
is independent of the regularity of the pressure.

Remark 2.7. If f = ∇Φ with Φ ∈ H1 then the solution of the modified problem (20) satisfies

ν(∇huh,∇huh) = (f ,Πhuh) = (∇Φ,Πhuh) = −(Φ,divh Πhuh) = 0

from which uh = 0 follows.

3. Examples

We consider in this section triples of spaces (Vh, Qh,Xh) satisfying all assumptions made in the previous
section. Note that the pressure space is always fixed to be Qh = P disc

k−1.

3.1. Families of simplicial meshes

We consider for the space Xh the Raviart–Thomas spaces RTk−1, k ≥ 2. Let K be a simplex in Rd. Then,
the local space of shape functions is given by

RTk−1(K) := Pk−1(K)d + xPk−1(K), dim RTk−1(K) =

{
k(k + 2), d = 2,

k(k + 1)(k + 3)/2, d = 3.

We get for vh ∈ RTk−1(K) that divh vh ∈ Pk−1(K). Taking into consideration that x · nE is constant for
x ∈ E, we see that vh · nE

∣∣
E
∈ Pk−1(E). Now we define Xh in the following way

Xh := {vh ∈ X : vh
∣∣
K
∈ RTk−1(K) for all K ∈ Th, 〈q,vh · n〉E = 0 for all q ∈ Pk−1(E), E ⊂ Γ}.

Then, the properties (13)–(16) of assumption A4 are satisfied by setting s = k − 1.
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3.1.1. Conforming discretisations

The space to approximate the velocity has to be rich enough to satisfy the inf-sup condition A1. This can
be achieved by enriching the space Pk of continuous, piecewise polynomial functions of degree less than or
equal to k with suitable bubble functions. Let bK be the product of barycentric coordinates related to the

simplex K ⊂ Rd, d = 2, 3, and let P̃l(K) denote the space of homogeneous polynomials of degree l which means

P̃l(K) = span{xi1xl−i2 , 0 ≤ i ≤ l} for d = 2 and P̃l(K) = span{xi11 x
i2
2 x

l−i1−i2
3 , 0 ≤ i1 + i2 ≤ l} for d = 3,

respectively. We choose

Vh := {vh ∈ H1
0(Ω)2 : vh

∣∣
K
∈ P+

k (K)2} with P+
k (K) := Pk(K)⊕ span{bK P̃k−2(K)}, k ≥ 2,

in the two-dimensional case whereas we set

Vh := {vh ∈ H1
0(Ω)3 : vh

∣∣
K
∈ P+

k (K)3} with P+
k (K) := Pk(K)⊕ span{bK(P̃k−2(K)⊕ P̃k−3(K))}, k ≥ 3,

in the three-dimensional case. The enrichment in the case d = 3 and k = 2 has to be handled separately [15,
Chapter II, Section 2.3]. We choose the vector-valued enrichment space

P+
2 (K) := (P2(K)⊕ bKP0(K))3 ⊕ span{p1,p2,p3,p4}

with the face bubble functions pi = niλi+1λi+2λi+3, i = 1, 2, 3, 4, where ni is the outer normal of the face
opposite to the vertex λi = 1 and all indices are modulo 4. The finite element space will be given by

Vh := {vh ∈ H1
0(Ω)3 : vh

∣∣
K
∈ P+

2 (K)}

in the considered special case
All above given velocity finite element approximations combined with the pressure space Qh = P disc

k−1 satisfy
the inf-sup condition [15, Chapter II, Sections 2.2 and 2.3], thus A1 is satisfied. A2 holds for any r ≥ 0 due to the
continuity of the velocity space. The standard interpolant ih : V ∩ Hk+1(Ω)d → Vh satisfies A3. It remains to
show the existence of the reconstruction operator Πh : V→ Xh satisfying (17)–(19). The first two relations, (17)
and (18), are used to define the reconstruction operator Πh locally which is well defined [3, Proposition 2.3.4].
Then, setting (Πhv)

∣∣
K

= Πh(v)
∣∣
K

we see that this construction guarantees the continuity of the normal

component vh · nE across an element, thus Πhv ∈ Xh. The local approximation property (19) follows from
Πhv = v for all v ∈ Pk−1(K), k ≥ 2, and the Bramble–Hilbert Lemma [5] applied on the reference cell.

Conclusion 3.1. Theorems 2.3 and 2.5 hold for the triple (Vh, Qh,Xh) = (P+
k , P

disc
k−1 ,RTk−1), k ≥ 2.

Note that the operator from [23, Section 4.2] could also used in this case.

3.1.2. Nonconforming discretisations

Nonconforming finite element approximations on triangles of order k = 1 and k = 3 satisfying the inf-sup
condition have been already proposed in [9]. Here, we consider a family of elements of arbitrary order in the
two-dimensional case [22]. We choose

Vh := {vh ∈ L2(Ω)2 : vh
∣∣
K
∈ P nc

k (K)2, 〈q, [vh]〉E = 0 for all q ∈ Pk−1(E), E ∈ Eh,
〈q,vh〉E = 0 for all q ∈ Pk−1(E), E ⊂ Γ}

where the local space of shape function is given by

P nc
k (K) := Pk(K) + span{b∗Kλk−2−i

1 λi2 : i = 0, . . . , k − 2}, b∗K = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1),
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and λ1, λ2, λ3 are the barycentric coordinates with respect to K. Note that the enrichment depends on the
choice which edge E corresponds to λ3 = 0. However, the enriched space P nc

k (K) is independent of that
choice [22, Section 4]. The finite element pair (P nc

k , P disc
k−1), k ≥ 1, satisfies the inf-sup condition [22, Theorem 2],

thus A1 holds. We mention that the lowest order pair (k = 1) of this family is the Crouzeix–Raviart element
for which a reconstruction operator has been studied in [19]. A2 is satisfied with r = k − 1 by the definition of
Vh. Choosing the same nodal functionals as in [22], the existence of an interpolation ih : V ∩Hk+1(Ω)2 → Vh

satisfying (7) follows [22, Lemma 4], i.e., A3 holds. Above we already proved the properties (13)–(16) of
assumption A4 for s = k−1. It remains to show the existence of the reconstruction operator Πh : V+Vh → Xh

satisfying (17)–(19). This can be done as in the conforming case by using (17) and (18) to define Πh locally
on each cell. Again, the approximation property (19) follows from the Bramble–Hilbert Lemma applied on the
reference triangle.

Conclusion 3.2. Theorems 2.3 and 2.5 hold for the triple (Vh, Qh,Xh) = (Pnc
k , P

disc
k−1 ,RTk−1), k ≥ 2.

Remark 3.3. A third order nonconforming finite element pair different from the one considered here has been
proposed in [9, Example 5]. The space for approximating the velocity is given by

Vh := {vh ∈ L2(Ω)2 : vh
∣∣
K
∈ P̂ nc

3 (K)2, 〈q, [vh]〉E = 0 for all q ∈ P2(E), E ∈ Eh,
〈q,vh〉E = 0 for all q ∈ P2(E), E ⊂ Γ}

where the local space of shape functions is defined as

P̂ nc
3 (K) := P3(K) + span{(λ1λ2λ3)P1(K)}.

The pair (P̂ nc
3 , P disc

2 ) satisfies the inf-sup condition A1. Assumption A2 holds for r = 2 due to the definition
of Vh. We can define locally an interpolation ih : V ∩ Hk+1(Ω)d → Vh which satisfies A3, see [9, Lemma 5].
A4 can be shown as before. Thus, setting k = 3, Theorems 2.3 and 2.5 hold for the triple (Vh, Qh,Xh) =

(P̂nc
3 , P

disc
2 ,RT2).

3.2. Families of rectangular and brick meshes

We now consider rectangular (d = 2) and brick (d = 3) meshes. We choose for the space Xh the Brezzi–
Douglas–Marini spaces BDMk, k ≥ 2, see [3, Section 2.4]. We start with the two-dimensional case and set

BDMk(K) := Pk(K)2 + span

{(
−xk+1

1

(k + 1)xk1x2

)
,

(
(k + 1)x1x

k
2

−xk+1
2

)}
,

dim BDMk = k2 + 3k + 4. Taking into consideration that the standard vector-valued Pk(K)2 space is lo-
cally enriched by two divergence-free functions, we conclude that divh vh ∈ Pk−1(K) for vh ∈ BDMk(K).
Furthermore, vh · nE

∣∣
E
∈ Pk(E) for vh ∈ BDMk(K). We are ready to define Xh as

Xh := {vh ∈ X : vh
∣∣
K
∈ BDMk(K) for all K ∈ Th, 〈q,vh · n〉E = 0 for all q ∈ Pk(E), E ⊂ Γ}.

Note that vh ∈ X implies that the normal component vh · nE is continuous across edges E ∈ Eh. Then, the
properties (13)–(16) of assumption A4 are satisfied by setting s = k.

We turn over to the three-dimensional case. According to [2], we set

BDMk(K) := Pk(K)3 + span

curl

x2x3(w2(x1, x3)− w3(x1, x2))
x3x1(w3(x1, x2)− w1(x2, x3))
x1x2(w1(x2, x3)− w2(x1, x3))

 ,
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dim BDMk(K) = (k+1)(k2+5k+12)/2. Again the space Pk(K)3 is locally enriched by divergence-free functions

where w1, w2, and w3 belong to P̃k. As a consequence, we have divh vh ∈ Pk−1(K) for vh ∈ BDMk(K).
Furthermore, a short computation shows that vh · nE

∣∣
E
∈ Pk(E) for vh ∈ BDMk(K). We define

Xh := {vh ∈ X : vh
∣∣
K
∈ BDMk(K) for all K ∈ Th, 〈q,vh · n〉E = 0 for all q ∈ Pk(E), E ⊂ Γ}

in the three-dimensional case. Then, the properties (13)–(16) of assumption A4 are satisfied by setting s = k.

3.2.1. Conforming discretisations

Consider velocity approximations in the space

Vh := {vh ∈ H1
0(Ω)d : vh

∣∣
K
∈ Qk(K)d}.

Then, the pair of finite elements (Vh, Qh) = (Qk, P
disc
k−1) is inf-sup stable in any space dimensions [21], in

particular for d = 2 and d = 3, thus A1 holds. A2 is true for any r ≥ 0 since the functions vh ∈ Vh are globally
continuous. The usual Lagrange interpolation ih : V∩Hk+1(Ω)d → Vh satisfies A3. Now we show the remaining
conditions of assumption A4. The two relations (17) and (18) define the reconstruction operator Πh locally,
see [3, Proposition 2.4.2] and [2, Theorem 3.6]. Then, setting (Πhv)

∣∣
K

= Πh(v)
∣∣
K

we see that this construction
guarantees the continuity of the normal component vh · nE across an edge/face, thus Πhv ∈ Xh. The local
approximation property (19) follows from Πhv = v for all v ∈ Pk−1(K), k ≥ 2, and the Bramble–Hilbert
Lemma applied on the reference cell.

Conclusion 3.4. Theorems 2.3 and 2.5 hold for the triple (Vh, Qh,Xh) = (Qk, P
disc
k−1 ,BDMk), k ≥ 2.

3.2.2. Nonconforming discretisations

Several families of inf-sup stable nonconforming finite element pairs on quadrilaterals and hexahedra are given
already in literature, see [1, 20]. However, they are not suitable for defining velocity reconstruction operators
into BDM-spaces due to limited consistency across the elements sides.

We construct the nonconforming finite element spaces of the velocity approximation by

Vh :=
{
vh ∈ L2(Ω)d : vh|K ∈ Qnc

k (K)d,〈q, [vh]〉E = 0, for all q ∈ Pk(E), E ∈ Eh,
〈q,vh〉E = 0, for all q ∈ Pk(E), E ⊂ Γ

}
where the local function space Qnc

k are defined via

Qnc
k (K) :=

{
v : v ◦ FK ∈ Q̂nc

k

}
with the affine reference transformation FK : (−1, 1)d → K. In order to complete the definition of Vh, the

spaces Q̂nc
k on the reference cells (−1, 1)d have to be specified. Assumption A2 is fulfilled for r = k due to the

definition of Vh.
We start with the two-dimensional case. Using the cell moments which correspond to Pk−2(K̂) and the edge

moments which are associated to Pk(Êi), i = 1, 2, 3, 4, Algorithm 1 in [16] allows to construct the local function
space

Q̂nc
k := Pk(K̂)⊕ R̂k ⊕ Ŝk

with

Ŝk := span
{
Lii, Li+1,i, Li,i+1, Li+2,i − Li,i+2 : k/2 < i ≤ k

}
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and

R̂k :=


span

{
Li+1,i, Li,i+1, Li+2,i − Li,i+2, : i = k/2

}
, k even,

span
{
Li+2,i − Li,i+2 : i = (k − 1)/2

}
, k odd,

where Lαβ(ξ, η) := Lα(ξ)Lβ(η) are polynomials in two variables. According to [16, Lemma 1], the interpolation

operator based on the cell and edge moments is well defined. Furthermore, the inclusion Pk(K̂) ⊂ Q̂nc
k ensures

the approximation properties of assumption A3.

We now pass to the three-dimensional case. Algorithm 2 in [16] with cell moments associated to Pk−2(K̂)

and face moments which correspond to Pk(F̂i), i = 1, . . . , 6, provides the function space

Q̂nc
k := Pk−2(K̂)⊕

3⊕
i=1

Âi ⊕
3⊕
i=1

B̂i ⊕ Ĉ

where

Â1 := span
{
Li,j,m, Li+1,j,m : i > max(j, k), i+ j +m = k

}
,

Â2 := span
{
Li,j,m, Li,j+1,m : j > max(i, k), i+ j +m = k

}
,

Â3 := span
{
Li,j,m, Li,j,m+1 : m > max(i, j), i+ j +m = k

}
,

and

B̂1 := span
{
Ljii, Lj,i+1,i, Lj,i,i+1, Lj,i,i+2 − Lj,i+2,i : i > j, k ≤ 2i+ j ≤ 2k − j

}
,

B̂2 := span
{
Liji, Li+1,j,i, Li,j,i+1, Li,j,i+2 − Li+2,j,i : i > j, k ≤ 2i+ j ≤ 2k − j

}
,

B̂3 := span
{
Liij , Li+1,i,j , Li,i+1,j , Li,i+2,j − Li+2,i,j : i > j, k ≤ 2i+ j ≤ 2k − j

}
.

Furthermore, we set

Ĉ := span
{
Liii, Li+1,i,i, Li,i+1,i, Li,i,i+1, : k/3 ≤ i ≤ k/2

}
⊕ span

{
Li+2,i,i − Li,i+2,i, Li,i+2,i − Li,i,i+2, : k/3 ≤ i ≤ k/2

}
where Lαβγ(ξ, η, ζ) := Lα(ξ)Lβ(η)Lγ(ζ) is a polynomial in three variables. Lemma 2 of [16] guarantees that
the interpolation operator ih based on the cell and faces moments is well defined. Using the same ideas as

in Example 10 in [16], the inclusion Pk(K̂) ⊂ Q̂nc
k can be shown. Hence, the approximation properties of

assumption A3 are provided.
For both considered space dimensions, the reconstruction operator Πh can be defined by using (17) and (18).

Applying the Bramble–Hilbert lemma shows that the approximation property (20) is satisfied. Hence, assump-
tion A4 is fulfilled.

It remains to show that the nonconforming velocity space Vh together with Qh = P disc
k−1 fulfils the inf-sup

condition of assumption A1. To this end, we use the equivalence of the inf-sup condition to the existence of an
interpolation operator Ih with

(divh Ihv, qh) = (div v, qh) ∀qh ∈ Qh, v ∈ H1
0(Ω)d, (34)

|Ihv|1,h ≤ C|v|1, ∀v ∈ H1
0(Ω)d, (35)
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where the constant C is independent of h. This result is due to Fortin [11]. We will show that the interpolation
operator ih based on cell and edge/face moments provides the properties (34) and (35). To check (34), we have

(divh ihv, qh) =
∑
K∈Th

(divh i
K
h v, qh)K

=
∑
K∈Th

(
− (iKh v,∇qh)K +

∑
E⊂∂K

〈iKr v · nK , qh〉E
)

=
∑
K∈Th

(
− (v,∇qh)K +

∑
E⊂∂K

〈v · nK , qh〉E
)

= (div v, qh).

We have used here an integration by parts and the fact that the restriction of qh ∈ Qh to any edge/face E

belongs to Pk(E) and that ∇qh|K ∈
(
Pr−2(K)

)d
. Moreover, the interpolation properties were exploited. The

condition (35) follows from a generalisation of (7) to functions of H1
0(Ω)d.

Conclusion 3.5. Theorems 2.3 and 2.5 are satisfied for the triple (Vh, Qh,Xh) = (Qnc
k , P

disc
k−1 ,BDMk), k ≥ 2.

4. Numerical tests

We will present in this section selected results of our numerical tests on the unit square (0, 1)2 using conforming
and nonconforming discretisations of orders two to five on axiparallel rectangular cells. All calculations have
been carried out using Matlab.

4.1. No flow problem

We consider the classical Stokes problem (ν = 1) with meshes of n ×m rectangles. The right-hand side of
the Stokes problem is given by the gradient force

f = ∇ϕ, ϕ = 2x2(1− x)y(1− y).

Hence, the solution of the Stokes problem is given by

u = 0, p = ϕ− 1

36
.

Note that subtracting the constant ensures p ∈ L2
0(Ω).

Table 1. No flow problem, ν = 1, conforming elements of order 3.

standard scheme modified scheme
‖u−uh‖0 |u−uh|1 ‖p−ph‖0 ‖ph−jhp‖0 ‖u−uh‖0 |u−uh|1 ‖p−ph‖0 ‖ph−jhp‖0

mesh error ord error ord error ord error error error error ord error

2× 3 5.192-05 1.166-03 2.265-03 9.237-04 1.687-18 2.390-17 2.068-03 5.661-17

4× 6 3.966-06 3.71 1.910-04 2.61 3.095-04 2.87 1.079-04 2.085-18 2.774-17 2.901-04 2.83 6.446-17
8×12 2.791-07 3.83 2.788-05 2.78 3.881-05 3.00 1.083-05 3.905-18 4.310-17 3.727-05 2.96 1.478-16

16×24 1.853-08 3.91 3.791-06 2.88 4.800-06 3.02 1.019-06 7.737-18 8.051-17 4.690-06 2.99 3.073-16

32×48 1.193-09 3.96 4.950-07 2.94 5.946-07 3.01 9.283-08 1.553-17 1.591-16 5.873-07 3.00 6.245-16
64×96 7.563-11 3.98 6.327-08 2.97 7.391-08 3.01 8.331-09 3.112-17 3.177-16 7.344-08 3.00 1.260-15

Tables 1 and 2 present the errors for the standard and modified schemes applied to conforming and noncon-
forming discretisations using elements of third order. It can be seen that the standard scheme provides for the
velocity approximations with both conforming and nonconforming finite elements the optimal convergence order
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Table 2. No flow problem, ν = 1, nonconforming elements of order 3.

standard scheme modified scheme
‖u−uh‖0 |u−uh|1,h ‖p−ph‖0 ‖ph−jhp‖0 ‖u−uh‖0 |u−uh|1,h ‖p−ph‖0 ‖ph−jhp‖0

mesh error ord error ord error ord error error error error ord error

2× 3 3.390-05 7.998-04 2.244-03 8.691-04 5.222-19 7.243-18 2.068-03 3.060-17
4× 6 2.923-06 3.54 1.603-04 2.32 3.057-04 2.88 9.641-05 6.668-19 7.484-18 2.901-04 2.83 2.907-17

8×12 2.137-07 3.77 2.469-05 2.70 3.837-05 2.99 9.114-06 1.202-18 1.056-17 3.727-05 2.96 3.408-17

16×24 1.432-08 3.90 3.397-06 2.86 4.762-06 3.01 8.243-07 2.125-18 1.754-17 4.690-06 2.99 5.093-17
32×48 9.240-10 3.95 4.444-07 2.93 5.919-07 3.01 7.350-08 3.978-18 3.248-17 5.873-07 3.00 9.026-17

64×96 5.863-11 3.98 5.682-08 2.97 7.373-08 3.00 6.521-09 7.974-18 6.518-17 7.344-08 3.00 1.791-16

of 3 for the (broken) H1-semi-norm of the velocity and the L2-norm of the pressure while the L2-norm of the
velocity convergences with order 4. However, the standard scheme violates the fundamental invariance condition
given Remark 2.7 since the applied gradient force on the right-hand side induces a velocity field which does not
vanish. In contrast, the modified scheme generates for both conforming and nonconforming discretisations the
expected zero flow field. In addition, we observe that the modification influences the L2-error of the pressure
only slightly. Furthermore, the discrete pressure ph of the modified discrete scheme coincides for the no flow
problem with the L2-projection jhp of the continuous pressure p, as predicted by (26) of Thm. 2.3. This is not
the case for the standard scheme.

4.2. Problem with flow field

We turn now to a problem with flow. The right-hand side of the Stokes problem is chosen such that

u =

(
∂yψ
−∂xψ

)
, ψ = x2(1− x)2y2(1− y)2, p = 2x2(1− x)y(1− y)− 1

36

is the solution.

Table 3. Problem with flow, ν = 1, conforming elements of order 4.

standard scheme modified scheme
‖u− uh‖0 |u− uh|1 ‖p− ph‖0 ‖u− uh‖0 |u− uh|1 ‖p− ph‖0

mesh error ord error ord error ord error ord error ord error ord

2× 3 1.075-05 2.863-04 4.114-04 4.613-05 1.217-03 8.830-04

4× 6 3.902-07 4.78 2.033-05 3.82 2.637-05 3.96 2.017-06 4.52 1.012-04 3.59 5.811-05 3.93
8×12 1.308-08 4.90 1.352-06 3.91 1.632-06 4.01 7.227-08 4.80 7.074-06 3.84 3.225-06 4.17

16×24 4.224-10 4.95 8.723-08 3.95 1.010-07 4.01 2.401-09 4.91 4.646-07 3.93 1.789-07 4.17

32×48 1.341-11 4.98 5.539-09 3.98 6.279-09 4.01 7.724-11 4.96 2.972-08 3.97 1.028-08 4.12

Table 4. Problem with flow, ν = 1, nonconforming elements of order 4.

standard scheme modified scheme

‖u− uh‖0 |u− uh|1,h ‖p− ph‖0 ‖u− uh‖0 |u− uh|1,h ‖p− ph‖0
mesh error ord error ord error ord error ord error ord error ord

2× 3 3.171-05 8.345-04 5.138-04 4.606-05 1.154-03 1.170-03
4× 6 1.314-06 4.59 7.562-05 3.46 3.940-05 3.70 1.928-06 4.58 1.047-04 3.46 7.654-05 3.93

8×12 4.313-08 4.93 5.211-06 3.86 2.534-06 3.96 7.003-08 4.78 7.659-06 3.77 4.326-06 4.15

16×24 1.345-09 5.00 3.338-07 3.96 1.550-07 4.03 2.351-09 4.90 5.115-07 3.90 2.442-07 4.15
32×48 4.163-11 5.01 2.097-08 3.99 9.446-09 4.04 7.598-11 4.95 3.293-08 3.96 1.416-08 4.11

We will have first a look on the case ν = 1. The results for conforming and nonconforming discretisations of
fourth order using the standard and the modified scheme are given in Tables 3 and 4. We clearly see that the
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expected convergence orders of 4 for the (broken) H1-semi-norm of the velocity and the L2-norm of the pressure
and of 5 for the L2-norm of the velocity are obtained in all cases. Moreover, the errors for the standard scheme
are slightly smaller than the corresponding errors for the modified scheme.

Table 5. Problem with flow, ν = 10−5, conforming elements of order 4.

standard scheme modified scheme

‖u− uh‖0 |u− uh|1 ‖p− ph‖0 ‖u− uh‖0 |u− uh|1 ‖p− ph‖0
mesh error ord error ord error ord error ord error ord error ord

2× 3 1.075+00 2.863+01 4.114-04 4.613-05 1.217-03 3.744-04
4× 6 3.902-02 4.78 2.033+00 3.82 2.637-05 3.96 2.017-06 4.52 1.012-04 3.59 2.486-05 3.91

8×12 1.308-03 4.90 1.352-01 3.91 1.632-06 4.01 7.227-08 4.80 7.074-06 3.84 1.575-06 3.98
16×24 4.224-05 4.95 8.723-03 3.95 1.010-07 4.01 2.401-09 4.91 4.646-07 3.93 9.880-08 4.00

32×48 1.341-06 4.98 5.539-04 3.98 6.279-09 4.01 7.835-11 4.94 2.972-08 3.97 6.181-09 4.00

Table 6. Problem with flow, ν = 10−5, nonconforming elements of order 4.

standard scheme modified scheme

‖u− uh‖0 |u− uh|1,h ‖p− ph‖0 ‖u− uh‖0 |u− uh|1,h ‖p− ph‖0
mesh error ord error ord error ord error ord error ord error ord

2× 3 6.430-01 1.800+01 4.230-04 4.606-05 1.154-03 3.744-04

4× 6 2.756-02 4.54 1.509+00 3.58 2.708-05 3.97 1.928-06 4.58 1.047-04 3.46 2.486-05 3.91

8×12 1.001-03 4.78 1.073-01 3.81 1.671-06 4.02 7.003-08 4.78 7.659-06 3.77 1.575-06 3.98
16×24 3.361-05 4.90 7.143-03 3.91 1.032-07 4.02 2.351-09 4.90 5.115-07 3.90 9.880-08 4.00

32×48 1.088-06 4.95 4.605-04 3.96 6.406-09 4.01 7.598-11 4.95 3.293-08 3.96 6.181-09 4.00

The behaviour for the viscosity parameter ν = 10−5 is completely different. The errors and convergence
orders are given in Tables 5 and 6. Although the standard scheme provides optimal convergence orders of 5
for the L2-norm of the velocity and of 4 for the (broken) H1-semi-norm of the velocity and the L2-norm of
the pressure, the errors are much larger compared to the modified scheme which gives also the same optimal
convergence orders. This observation holds for both conforming and nonconforming velocity discretisations.
Furthermore, the pressure errors for both types of discretisations are identical, at least up to the leading four
digits if the modified scheme is used. This interesting behaviour of the conforming and the nonconforming
discrete pressures is probably explained by (29), (26), and (27). Since both discrete pressure spaces are the
same, the discrete pressure errors differ only up to velocity-dependent contributions which are proportional to
ν. Hence, these contributions are small for small viscosity parameters.

Table 7. Example with flow. Conforming discretisation of order 3, 17× 23-mesh.

standard scheme modified scheme
ν ‖u− uh‖0 |u− uh|1 ‖p− ph‖0 ‖u− uh‖0 |u− uh|1 ‖p− ph‖0

10−0 2.0742e-08 4.2338e-06 4.4455e-06 5.7559e-08 1.1327e-05 5.2358e-06
10−1 1.7608e-07 3.5676e-05 4.4455e-06 5.7559e-08 1.1327e-05 4.3587e-06
10−2 1.7574e-06 3.5603e-04 4.4455e-06 5.7559e-08 1.1327e-05 4.3491e-06

10−3 1.7574e-05 3.5602e-03 4.4455e-06 5.7559e-08 1.1327e-05 4.3490e-06
10−4 1.7574e-04 3.5602e-02 4.4455e-06 5.7559e-08 1.1327e-05 4.3490e-06

10−5 1.7574e-03 3.5602e-01 4.4455e-06 5.7559e-08 1.1327e-05 4.3490e-06
10−6 1.7574e-02 3.5602e+00 4.4455e-06 5.7559e-08 1.1327e-05 4.3490e-06
10−7 1.7574e-01 3.5602e+01 4.4455e-06 5.7559e-08 1.1327e-05 4.3490e-06
10−8 1.7574e+00 3.5602e+02 4.4455e-06 5.7566e-08 1.1327e-05 4.3490e-06

10−9 1.7574e+01 3.5602e+03 4.4455e-06 5.8112e-08 1.1328e-05 4.3490e-06
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Table 8. Example with flow. Nonconforming discretisation of order 3, 17× 23-mesh.

standard scheme modified scheme

ν ‖u− uh‖0 |u− uh|1,h ‖p− ph‖0 ‖u− uh‖0 |u− uh|1,h ‖p− ph‖0
10−0 7.2637e-08 1.3500e-05 4.4397e-06 8.0962e-08 1.5800e-05 5.0577e-06
10−1 1.5039e-07 3.3942e-05 4.4134e-06 8.0962e-08 1.5800e-05 4.3566e-06

10−2 1.3254e-06 3.1327e-04 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06

10−3 1.3235e-05 3.1300e-03 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06
10−4 1.3234e-04 3.1299e-02 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06

10−5 1.3234e-03 3.1299e-01 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06
10−6 1.3234e-02 3.1299e+00 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06

10−7 1.3234e-01 3.1299e+01 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06

10−8 1.3234e+00 3.1299e+02 4.4131e-06 8.0962e-08 1.5800e-05 4.3490e-06
10−9 1.3234e+01 3.1299e+03 4.4131e-06 8.0967e-08 1.5800e-05 4.3490e-06

We will consider finally how the errors for conforming and nonconforming discretisations using the standard
scheme or the modified scheme behave if the viscosity parameter ν changes. Tables 7 and 8 show the velocity
errors in the L2-norm and the (broken) H1-semi-norm as well as the pressure error in the L2-norm. The
calculations have used a fixed mesh of 17 × 23 axiparallel rectangles. We have chosen two prime numbers to
minimise effects caused by symmetry. We clearly observe that the velocity error increases like ν−1 for the both
conforming and nonconforming discretisations if the standard scheme is applied. In contrast, the velocity errors
for the modified scheme are independent of the parameter ν. Furthermore, we see that the pressure error is
almost constant, even for the standard scheme. This indicates that already the standard discretisation allows an
accurate pressure approximation while the modification is needed to guarantee accurate velocity approximation
in the case of small viscosity parameters.
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