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Abstract

This paper considers the numerical solution of time-dependent convection-di�usion-reaction equations. We
shall employ combinations of streamline-upwind Petrov–Galerkin (SUPG) and local projection stabilization
(LPS) methods in space with the higher order variational time discretization schemes. In particular, we con-
sider time discretizations by discontinuous Galerkin (dG) methods and continuous Galerkin–Petrov (cGP)
methods. Several numerical tests have been performed to assess the accuracy of combinations of spatial and
temporal discretization schemes. Furthermore, the dependence of the results on the stabilization parameters
of the spatial discretizations are discussed. Finally the long-time behavior of overshoots and undershoots is
investigated.

1. Introduction

Let Ω be a polygonal or polyhedral domain in R d , d = 2 , 3, with boundary ∂Ω. We consider the following
time-dependent convection-di�usion-reaction equation:

Find u : Ω × [0, T ] � R such that

u�− ε∆ u + b · � u + σu = f in Ω × (0 , T ) ,
u = 0 on ∂Ω × (0 , T ) ,

u( · , 0) = u0 in Ω,
(1)

with a small positive constant 0 < ε � 1, b(x, t ), σ(x, t ), and f (x, t ) are given functions, u0 the initial data,
and T > 0 a given final time. In the following we assume that there exists a positive constant σ0 such that

σ(x, t ) −
1
2
div b(x, t ) ≥ σ0 > 0 �(x, t ) � Ω × [0, T )2(]

which guarantees the unique solvability of problem (1). Note that the assumption (2) is no restriction
for time-dependent convection-di�usion problems. Indeed, if condition (2) is not fulfilled we consider the
problem



Find v : Ω× [0, T ]→ R such that

v′ − ε∆v + b · ∇v + (σ +M)v = e−Mtf in Ω× (0, T ),

v = 0 on ∂Ω× (0, T ),

v(·, 0) = u0 in Ω,

for the function v defined by
v(x, t) := e−Mtu(x, t).

If M is chosen sufficiently large then condition (2) is fulfilled for the modified v-problem. Note that the
above transformation causes only small changes in all upcoming error estimate since only an additional
factor (M + 1)n will appear on the right-hand side where n is the highest order time derivative inside norms
of the exact solution.

It is well-known for convection-dominated problems that numerical solutions obtained by standard
Galerkin finite element methods are polluted by spurious oscillations which spread over the whole spa-
tial domain unless the mesh width becomes unpractically small. To overcome this instability while ensuring
high accuracy, several stabilization techniques have been established in the last decades. One of the famous
remedies is the streamline-upwind Petrov–Galerkin (SUPG) method developed by Hughes and Brooks [1].
In [2], a space-time formulation of (1) is studied where the spatial discretization is stabilized by SUPG and
a discontinuous Galerkin method is used as temporal discretization. Note that space-time formulations lead
to larger systems of linear equations since (d+ 1)-dimensional problems are discretized. In order to handle
only d-dimensional problems, we will separate spatial and temporal discretization in this paper.

The success of stabilization methods depends very often crucially on the choice of stabilization parame-
ters. Applying standard techniques to prove stability and error estimates for the residual based stabilization
methods for time-dependent convection-diffusion-reaction problems leads to lower bounds on the time step
length, see [3]. The SUPG method in space combined with time discretizations by the backward Euler
scheme, the Crank-Nicolson method, and the second order BDF scheme for transient transport problems
was investigated by Burman [4]. He proved error bounds in the L2-norm and in a norm of the material
derivative provided the problem data are sufficiently smooth. In that study the stabilization parameters de-
pend only on the mesh size in space since the temporal discretization is performed after the choice of spatial
stabilization parameters. Semi-discretization in space of (1) without assumption (2) have been considered
by Harari and Hauke [5] as well as by Burman and Smith [6].

John and Novo [3] have analyzed for solving (1) the combination of SUPG in space with time stepping
by the backward Euler method and the Crank-Nicolson scheme. If the stabilization parameters are defined
for the fully discrete scheme then the stabilization parameters depend on the time step length in such a
way that they tend to zero as the time step length approaches zero. Two different choices for stabilization
parameters which depend on the time step length have been discussed in [3]. For the case that convection
and reaction are independent of time, a new technique has been considered in [3] which allows that the
stabilization parameters could be chosen similar to the steady-state case. This means, they are independent
of the time step length.

Comparisons of the SUPG method with other stabilization techniques can be found in [7, 8]. The stability
of consistent stabilization methods for convection-diffusion and flow problems in the small time step limit
has been investigated in [9, 10].

A stabilization technique which became very popular during the last decade is the local projection
stabilization (LPS) scheme [11–13]. The local projection stabilization method provides an additional control
on the fluctuation of the gradient or parts of its. Although the method is weakly consistent only, the
consistency error can be bounded such that the optimal order of convergence is maintained. In contrast
to the fully consistent SUPG method, neither time derivatives nor second order derivatives have to be
assembled for the stabilization term of LPS. Local projection methods were successfully applied to Stokes
problems [14], Oseen problems [12, 13], and convection-diffusion-reaction problems [15].

The application of spatial stabilization techniques reduces dramatically the oscillations which spread in
Galerkin methods over the whole computational domain. The remaining oscillations are much smaller and
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located only in the vicinity of interior and boundary layers. In order to overcome these oscillations, methods
for shock or discontinuity capturing can be used. Numerical and analytical investigations can be found e.g.
in [16–18].

In order to obtain numerical solutions which are highly accurate in space and time, the use of higher time
discretization schemes is essential. We will apply in this paper higher order time discretization schemes of
variational type which will be combined with spatial stabilizations by SUPG and LPS. Continuous Galerkin–
Petrov schemes (cGP) and discontinuous Galerkin schemes (dG) are considered. We denote by cGP(k) the
method where the discrete solution space in time consists of continuous piecewise polynomials of degree k
and the discrete test space is built by discontinuous polynomials of degree k− 1. Hence, it can be seen as a
Petrov–Galerkin method. Note that this method has been named differently in the literature: discontinuous
Galerkin–Petrov method in [19] or continuous Galerkin–Petrov (cGP) method in [20–22]. We call dG(k)
those method where both solution space and test space are constructed by discontinuous polynomials of
degree k. Since the time test functions for both considered temporal discretizations are discontinuous in
time, the solutions of these schemes can be calculated by a time marching process.

Spatial discretizations by discontinuous Galerkin methods were introduced by Reed and Hill for neutron
transport problems, see [23]. The use of continuous and discontinuous finite element methods to discretize
time-dependent problems has been analyzed for ordinary and partial differential equations by several authors.
The time discretization by discontinuous Galerkin methods was introduced and analyzed in [24] for the
numerical solution of ordinary differential equations and is combined with continuous finite element methods
in space for parabolic problem in [25–27].

The combination of LPS methods in space and dG methods in time has been analyzed for transient
convection-diffusion-reaction problems in [28]. The continuous Galerkin method in time for the heat equa-
tion has been studied by Aziz and Monk in [29]. They have proved optimal error estimates as well as
super-convergence results at the endpoints of the discrete time intervals. Schieweck [19] has investigated
the cGP(k)-method for linear ordinary differential equations in an abstract Hilbert space setting and for
nonlinear system of ordinary differential equations in d space dimensions. He has proved A-stability and
optimal error estimates of the associated cGP(k)-method. Moreover, it was shown that this discretization
method has an energy decreasing property for the gradient flow equation of an energy functional. Numerical
comparisons of dG and cGP methods as time discretization of heat equations and transient Stokes problems
are presented in [21] and [22], respectively. Two families of variational time discretization methods for the
numerical solution of nonlinear systems of ordinary differential equations were recently given in [20]. Fur-
thermore, it was shown there that these methods can be interpreted as pure collocation and pure variational
methods with special numerical integration. In [20], simple post-processing algorithms were presented which
allow to increase the obtained accuracy in time by one order in time-integrated norms.

The aim of our paper is to study numerically various combinations of spatial and temporal discretizations
for solving (1). In particular, we will present numerical results for the combination of streamline-upwind
Petrov–Galerkin methods and local projection stabilization methods in space with time discretizations by
continuous Galerkin–Petrov methods and discontinuous Galerkin methods. The main focus lies on higher
order methods in space and time. In total, four examples with different solution behavior will be considered.
We investigate numerically a problem with dominating time error, a problems with exponential boundary
layers, and two problems with rotating bodies. We will evaluate the applied schemes by their undershoots
and overshoots. Furthermore, the long time behavior will be examined.

The remainder of the paper is organized as follows: Section 2 introduces the basic notation and presents
some preliminaries that will be used later. In Section 3, we describe the semi-discretization of the SUPG
method and the fully discrete formulations using cGP and dG in time, respectively. Section 4 presents the
discretization in space by LPS methods and the corresponding fully discrete formulations obtained by time
discretizations with cGP and dG, respectively. Section 5 contains the numerical studies and the evaluation
of the methods.
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2. Preliminaries

Throughout this paper, standard notation and conventions will be used. For a measurable set G ⊂ Rd,
the inner product in L2(G) and L2(G)d will be denoted by (·, ·)G. The norm and semi-norm in Wm,p(G) are
given by ‖ ·‖m,p,G and | · |m,p,G, respectively. In the case p = 2, we write Hm(G), ‖ ·‖m,G, and | · |m,G instead
of Wm,2(G), ‖ · ‖m,2,G, and | · |m,2,G. If G = Ω, the index G in inner products, norms, and semi-norms will
be omitted. The subspace of functions from H1(Ω) having zero boundary trace is denoted by H1

0 (Ω). We
consider also some Bochner spaces. Let X be a Banach space with norm ‖ · ‖X . We define

L2(0, T ;X) :=

{
v : (0, T )→ X :

∫ T

0

‖v(t)‖2X dt <∞

}
,

H1(0, T ;X) :=
{
v ∈ L2(0, T ;X) : v′ ∈ L2(0, T ;X) <∞

}
,

C(0, T ;X) := {v : [0, T ]→ X : v is continuous},

where v′ is the time derivative of v in the sense of distributions.
In order to write a weak form of (1), let us introduce the space V := H1

0 (Ω), its dual space H−1(Ω), and
〈·, ·〉 as the duality product between these spaces.

A function u is a weak solution of problem (1), if

u ∈ L2
(
0, T ;H1

0 (Ω)
)
, u′ ∈ L2

(
0, T ;H−1(Ω)

)
(3)

with

〈u′(t), v〉+ a(t;u(t), v) = 〈f(t), v〉 ∀v ∈ V (4)

for almost all t ∈ (0, T ] and
u(0) = u0, (5)

where the form a is given by

a(t;u, v) := ε(∇u,∇v) + (b(t) · ∇u, v) + (σ(t)u, v).

The first argument t of a is used to indicate that the coefficients inside a depend on time while a is bilinear
with respect to the second and third arguments.

Note that (3) implies the continuity of u as a mapping of [0, T ]→ L2(Ω) such that the initial condition (5)
is well-defined.

In the following, we shall denote by f ′, f ′′, and f (k) the first, second, and k-th order time derivative of
f , respectively.

For finite element discretizations of (4), let {Th} denote a family of shape regular triangulations of Ω
into open d-simplices, quadrilaterals, or hexahedra such that

Ω =
⋃

K∈Th

K.

The diameter of K ∈ Th will be denoted by hK and the mesh size h is defined by h := max
K∈Th

hK . Let Vh be

a finite element space defined on Th.
The standard Galerkin method applied to (4) consists in

Find uh ∈ H1(0, T ;Vh) such that uh(0) = uh,0 and for almost all t ∈ (0, T ](
u′h(t), vh

)
+ a
(
t;uh(t), vh

)
=
(
f(t), vh

)
∀vh ∈ Vh, (6)

where uh,0 ∈ Vh is a suitable approximation of u0.
In the convection-dominant case (ε � 1), it is well-known that the standard Galerkin method (6)

applied to (1) is unstable and leads to solutions which are globally polluted by spurious oscillations unless
the discretization parameter h is sufficiently small.
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3. Spatial stabilization by the SUPG method

3.1. The SUPG method

A popular remedy to enhance stability while keeping accuracy of underlying finite element methods is
the streamline-upwind Petrov–Galerkin (SUPG) scheme. In the time-continuous case, the stabilized semi-
discrete problem is defined as follows:

Find uh ∈ H1(0, T ;Vh) such that uh(0) = uh,0 and for almost every t ∈ (0, T ](
u′h(t), vh

)
+ aSUPG

(
t;uh(t), vh

)
+
∑
K∈Th

δK
(
u′h(t), b(t) · ∇vh

)
K

=
(
f(t), vh

)
+
∑
K∈Th

δK
(
f(t), b(t) · ∇vh

)
K

∀vh ∈ Vh. (7)

The bilinear form aSUPG(t; ·, ·) is given by

aSUPG(t;uh, vh) := a(t;uh, vh) +
∑
K∈Th

δK
(
− ε∆uh + b(t) · ∇uh + σ(t)uh, b(t) · ∇vh

)
K
,

where δK , K ∈ Th, denote the local stabilization parameters which depend on the mesh cells K ∈ Th. Note
again that the first argument t indicates that the coefficients inside the bilinear form are time-dependent.
Let the inverse inequality

‖∆vh‖0,K ≤ cinvh
−1
K |vh|1,K ∀vh ∈ Vh

hold for all K ∈ Th where the constant cinv is independent of K and h. We assume for the stabilization
parameter δK that

0 < δK ≤
1

2
min

{
σ0

‖σ‖0,∞,K
,
h2
K

εcinv

}
∀K ∈ Th. (8)

The mesh-dependent norm associated with aSUPG is given by

|||v|||SUPG :=
{
ε|v|21 + σ0‖v‖20 +

∑
K∈Th

δK‖b · ∇v‖20,K
}1/2

.

If the norm ||| · ||| will be evaluated for a time-dependent function v at time t then the convection field b
will be evaluated at the same time point t.

The steady-state problem associated with (1) is given by

−ε∆U + b · ∇U + σU = f in Ω,

U = 0 on ∂Ω.
(9)

Its SUPG discretization reads
Find Uh ∈ Vh such that

aSUPG(Uh, vh) = (f, vh) +
∑
K∈Th

(f, b · vh)K ∀vh ∈ Vh

where the bilinear form aSUPG is independent of time.
With the help of the local mesh Péclet number

PeK :=
‖b‖0,∞,K hK

2ε
, K ∈ Th,

we set δK , K ∈ Th, according to

δK :=

{
δ0hK if PeK > 1,

δ1h
2
K/ε if PeK ≤ 1,

(10)

where δ0 and δ1 are non-negative constants.
We have the following a priori estimate, see [30, Theorem 3.27].
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Theorem 1. Let the data of (9) be sufficiently smooth. The stabilization parameters δK , K ∈ Th, fulfill (8)
and (10). Furthermore, Pr-elements on simplices and Qr-elements on quadrilaterals and hexahedra are used.
Then, the global error estimate

‖U − Uh‖SUPG ≤ C(ε1/2 + h1/2)hr‖U‖r+1

holds true where the positive constant C is independent of ε and h.

In the following, we discretize problem (7) in time by using continuous Galerkin–Petrov (cGP) and
discontinuous Galerkin (dG) methods. To this end, we consider a partition 0 = t0 < t1 < · · · < tN = T of
the time interval I := [0, T ] and set In := (tn−1, tn], τn := tn − tn−1, n = 1, . . . , N , and τ := max

1≤n≤N
τn. For

a given non-negative integer k, we define the fully discrete time-continuous spaces

Xk :=

{
u ∈ C(I, Vh) : u|In ∈ Pk(In, Vh), n = 1, . . . , N

}
and time-discontinuous spaces

Yk :=

{
v ∈ L2(I, Vh) : v|In ∈ Pk(In, Vh), n = 1, . . . , N

}
where

Pk(In, Vh) :=

{
u : In → Vh : u(t) =

k∑
j=0

U jtj , U j ∈ Vh, j = 0, . . . , k

}
denotes the space of Vh-valued polynomials of order k in time on In. The functions in the space Yk are
allowed to be discontinuous at the nodes tn, n = 1, . . . , N − 1. For such functions the left-sided value u−n ,
right-sided value u+

n , and the jump [u]n are defined by

u−n := lim
t→tn−0

u(t), u+
n := lim

t→tn+0
u(t), [u]n := u+

n − u−n .

In what follows the SUPG method combined with the cGP method will be called SUPG/cGP while the
combination of the SUPG method with the dG method will be called SUPG/dG.

3.2. The method SUPG/cGP(k)

In this section, we describe the combination of the cGP time discretization scheme with the SUPG finite
element method in space to get a fully discrete version of (7). It reads

Find uh,τ ∈ Xk such that uh,τ (0) = uh,0 and

∫ T

0

{
(u′h,τ (t), vh,τ (t)) + aSUPG

(
t;uh,τ (t), vh,τ (t)

)
+
∑
K∈Th

δK
(
u′h,τ (t), b(t) · ∇vh,τ (t)

)
K

}
dt

=

∫ T

0

{(
f(t), vh,τ (t)

)
+
∑
K∈Th

δK
(
f(t), b(t) · ∇vh,τ (t)

)
K

}
dt ∀vh,τ ∈ Yk−1. (11)

Since the test functions are allowed to be discontinuous at the discrete time points tn, n = 1, . . . , N − 1, we
can choose test functions vh,τ (t) = vhψ(t) with a time independent vh ∈ Vh and a scalar function ψ : I → R
which is zero on I \ In and a polynomial of degree less than or equal to k − 1 on In. Then, the solution of
the cGP(k)-method can be determined by successively solving a local problem on each time interval In.

The fully discrete In-problem associated with (11) reads as follows:
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Find uh,τ
∣∣
In
∈ Pk(In, Vh) such that for all∫

In

{
(u′h,τ (t), vh) + aSUPG(t;uh,τ (t), vh) +

∑
K∈Th

δK
(
u′h,τ (t), b(t) · ∇vh

)
K

}
ψ(t)dt

=

∫
In

{(
f(t), vh

)
+
∑
K∈Th

δK
(
f(t), b(t) · ∇vh

)
K

}
ψ(t)dt ∀vh ∈ Vh,∀ψ ∈ Pk−1(In)

with uh,τ
∣∣
I1

(t0) = uh,0 and uh,τ
∣∣
In

(tn−1) := uh,τ
∣∣
In−1

(tn−1) for n ≥ 2.

We apply the (k + 1)-points Gauß-Lobatto quadrature rule for the numerical integration of the time
integrals. This formula is exact for polynomials of degree less than or equal to 2k− 1. We denote by t̂j and
ω̂j , j = 0, . . . , k, the Gauß-Lobatto points and the corresponding quadrature weights on [−1, 1], respectively.

Let φ̂j ∈ Pk, j = 0, . . . , k, and ψ̂j ∈ Pk−1, j = 1, . . . , k, denote the Lagrange basis functions with respect to
t̂j , j = 0, . . . , k, and t̂j , j = 1, . . . , k, respectively. The time polynomials φn,j ∈ Pk(In), j = 0, . . . , k, and
ψn,j ∈ Pk−1(In), j = 1, . . . , k, are defined by

φn,j(t) := φ̂j
(
T−1
n (t)

)
and ψn,j(t) := ψ̂j

(
T−1
n (t)

)
with the affine transformation

Tn : [−1, 1]→ In, t̂ 7→ tn−1 +
τn
2

(t̂+ 1), (12)

see [20]. In order to determine the local solution uh,τ |In , we represent it by

uh,τ
∣∣
In

(t) =

k∑
j=0

U jn,hφn,j(t) ∀t ∈ In,

with coefficients U jn,h ∈ Vh, j = 0, . . . , k. The particular ansatz ensures

uh,τ (tn,j) = U jn,h, j = 0, . . . , k,

where
tn,j := Tn(t̂j), j = 0, . . . , k.

Since tn,0 = tn−1 and tn,k = tn hold, the initial condition is equivalent to the conditions

U0
1,h = uh,0 and U0

n,h = uh,τ
∣∣
In

(tn−1) = Ukn−1,h if n ≥ 2.

Using the properties of the basis functions in time, we obtain the following coupled system of equations:

For U0
1,h = uh,0 and U0

n,h = Ukn−1,h if n ≥ 2, find the coefficients U jn,h ∈ Vh, j = 1, . . . k, such that

k∑
j=0

αci,j

{(
U jn,h, vh

)
+
∑
K∈Th

δK
(
U jn,h, b(tn,j) · ∇vh)K

}
+
τn
2
aSUPG(tn,i;U

i
n,h, vh)

=
τn
2

{
(f(tn,i), vh) + βci

(
f(tn−1), vh

)}
+
τn
2

∑
K∈Th

δK

{(
f(tn,i), b(tn,i) · ∇vh

)
K

+ βci
(
f(tn−1), b(tn−1) · ∇vh

)
K

}
for i = 1, . . . , k and for all vh ∈ Vh, where αci,j and βci are defined by

αci,j := φ̂′j(t̂i) + βci φ̂
′
j(t̂0), βci := ω̂0ψ̂i(t̂0), i = 1, . . . , k, j = 0, . . . , k, (13)
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see [20]. Let {b1, . . . , bM} be a finite element basis of the space Vh and ξjn ∈ RM denotes the nodal vector
associated with the finite element function U jn,h ∈ Vh, i.e.,

U jn,h(x) =

M∑
ν=1

(
ξjn
)
ν
bν(x), x ∈ Ω.

Furthermore, we define by

(M)s,ν := (bν , bs), (Cjn)s,ν :=
∑
K∈Th

δK
(
bν , b(tn,j) · ∇bs

)
K
, (Ajn)s,ν = aSUPG

(
tn,j , bν , bs

)
,

(F jn)ν :=
(
f(tn,j), bν

)
+
∑
K∈Th

δK
(
f(tn,j), b(tn,j) · ∇bν

)
K

the mass matrix M ∈ RM×M, the matrices Cjn ∈ RM×M associated with the additional time derivative
term, the stiffness matrices Ajn ∈ RM×M, and the discrete source term vectors F jn ∈ RM. Note that the
time-dependence of Ajn and Cjn is due to the time-dependent coefficients b and c.

Using the above notation, the numerically integrated fully discrete In-problem gives the following (k×k)-
block-system:

Find ξjn ∈ RM, j = 1, . . . , k, such that

k∑
j=0

αci,j

{
M + Cjn

}
ξjn +

τn
2
Ainξ

i
n =

τn
2

{
F in + βci

(
F 0
n −A0

nξ
0
n

)}
, i = 1, . . . , k. (14)

Note that ξ0
n is given either via the discrete initial condition uh,0 for n = 1 or by ξ0

n = ξkn−1 for n ≥ 2.
In the following we present the methods SUPG/cGP(1) and SUPG/cGP(2) in more detail.

SUPG/cGP(1). We use the 2-points Gauß-Lobatto formula with points tn,0 = tn−1, tn,1 = tn, and
weights ω̂0 = ω̂1 = 1, which yields the well known trapezoidal rule. We get αc1,0 = −1, αc1,1 = 1, and βc1 = 1,

see [20], and problem (14) leads to the following equation for the only coefficient ξ1
n ∈ RM{

M + C1
n +

τn
2
A1
n

}
ξ1
n =

{
M + C0

n −
τn
2
A0
n

}
ξ0
n +

τn
2

{
F 0
n + F 1

n

}
.

SUPG/cGP(2). Here, we apply the 3-points Gauß-Lobatto formula with points tn,0 = tn−1, tn,1 =
(tn−1 + tn)/2, tn,2 = tn, and reference weights ω̂0 = ω̂2 = 1/3, ω̂1 = 4/3, which is known as Simpson’s rule.
Then, we obtain the coefficients

(αci,j) =

(
− 5

4 1 1
4

2 −4 2

)
, (βci ) =

(
1
2
−1

)
. (15)

On the time interval In = (tn−1, tn] we have to solve for the vectors ξ1
n and ξ2

n which correspond to

U1
n = uh,τ (tn,1) = uh,τ

(
tn−1 + tn

2

)
and U2

n = uh,τ (tn,2) = uh,τ (tn).

The corresponding coupled (2× 2)-block-system for ξ1
n, ξ

2
n ∈ RM reads:[

M + C1
n + τn

2 A
1
n

1
4 (M + C2

n)

−4(M + C1
n) 2

(
M + C2

n

)
+ τn

2 A
2
n

][
ξ1
n

ξ2
n

]
=

[ (
5
4 (M + C0

n)− τn
4 A

0
n

)
ξ0
n + τn

2 F
1
n + τn

4 F
0
n(

− 2(M + C0
n) + τn

2 A
0
n

)
ξ0
n + τn

2 F
2
n − τn

2 F
0
n

]
. (16)
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3.3. The method SUPG/dG(k)

In this subsection we describe the details of SUPG/dG(k) which combines the discontinuous Galerkin
method dG(k) in time with the SUPG method in space.

The fully discrete method SUPG/dG(k) reads:

Find uh,τ ∈ Yk such that

N∑
n=1

∫
In

{
(u′h,τ (t), vh,τ (t)) +

∑
K∈Th

δK
(
u′h,τ (t), b(t) · ∇vh,τ (t)

)
K

+ aSUPG

(
t;uh,τ (t), vh,τ (t)

)}
dt

+

N−1∑
n=1

(
[uh,τ ]n, v

+
n

)
+ (u+

0 , v
+
0 ) +

N−1∑
n=1

∑
K∈Th

δK
(
[uh,τ ]n, b(tn) · ∇v+

n

)
K

+
∑
K∈Th

δK
(
u+

0 , b(t0) · ∇v+
0

)
K

= (uh,0, v
+
0 ) +

∑
K∈Th

δK
(
uh,0, b(t0) · ∇v+

0

)
K

+

∫ T

0

{
(f(t), vh,τ (t)) +

∑
K∈Th

δK
(
f(t), b(t) · ∇vh,τ (t)

)
K

}
dt

(17)

for all vh,τ ∈ Yk.
Since the test functions in time are discontinuous, we choose vh,τ (t) = vhψ(t) with vh ∈ Vh and a scalar

function ψ : I → R which is zero on I \ In and a polynomial of degree less than or equal to k on In. Hence,
the problem (17) can be solved by a time-marching process.

The In-problem of the fully discrete method SUPG/dG(k) reads:

Given u−n with u−0 = uh,0, find uh,τ
∣∣
In
∈ Pk(In, Vh) such that for all ψ ∈ Pk(In)∫

In

{(
u′h,τ (t), vh

)
+ aSUPG

(
t;uh,τ (t), vh

)
+
∑
K∈Th

δK
(
u′h,τ (t), b(t) · ∇vh

)}
ψ(t)dt

+

{(
[uh,τ ]n−1, vh

)
+
∑
K∈Th

δK
(
[uh,τ ]n−1, b(tn−1) · ∇vh

)}
ψ(tn−1)

=

∫
In

{(
f(t), vh

)
+
∑
K∈Th

δK
(
f(t), b(t) · ∇vh

)
K

}
ψ(t)dt ∀vh ∈ Vh. (18)

In order to evaluate the time integrals numerically, the (k + 1)-points right-sided Gauß-Radau quadrature
formula is applied. Using this quadrature rule, polynomials up to degree 2k are integrated exactly. Let t̂j
and ω̂j , j = 1, . . . , k + 1, denote the points and the weights for the (k + 1)-points right-sided Gauß-Radau
quadrature formula on [−1, 1], respectively. In particular, we have t̂k+1 = 1. The Lagrange basis functions

with respect to these points are denoted by φ̂j , j = 1, . . . , k + 1. Following [20], the polynomial functions
φn,j(t) ∈ Pk(In) are defined by

φn,j(t) := φ̂j
(
T−1
n (t)

)
with the affine mapping Tn from (12). Since uh,τ restricted to the interval In is a Vh-valued polynomial of
degree less than or equal to k, it can be represented as

uh,τ
∣∣
In

(t) :=

k+1∑
j=1

U jn,hφn,j(t)

where U jn,h ∈ Vh, j = 1, . . . , k + 1. Due to this choice of the ansatz basis, we have

uh,τ (tn,j) = U jn,h, j = 1, . . . , k + 1,

where
tn,j := Tn(t̂j), j = 1, . . . , k + 1.

9



As particular test functions in time, we choose

ψn,j(t) :=
1

ω̂j
φ̂j
(
T−1
n (t)

)
, j = 1, . . . , k + 1.

Using the above setting in (18), we get the following system of equations:

Find the coefficients U jn,h ∈ Vh, j = 1, . . . k + 1, such that

k+1∑
j=1

αdi,j

{(
U jn,h, vh

)
+
∑
K∈Th

δK
(
U jn,h, b(tn,j) · ∇vh

)
K

}
+
τn
2
aSUPG

(
tn,i;U

i
n,h, vh

)
= βdi

{(
U0
n,h, vh

)
+
∑
K∈Th

δK
(
U0
n,h, b(tn−1) · ∇vh

)
K

}
+
τn
2

{(
f(tn,i), vh

)
+
∑
K∈Th

δK
(
f(tn,i), b(tn,i) · ∇vh

)
K

}
for i = 1, . . . , k + 1 and for all vh ∈ Vh, where

αdi,j := φ̂′j(t̂i) + βdi φ̂j(−1), βdi :=
1

ω̂i
φ̂i(−1), U0

n,h = U−n−1,h. (19)

Similarly as in the cGP-method, we use a basis {bµ}1≤µ≤M of Vh, the matrices M , Cjn, Ajn, and the
source term vectors F jn. Then, the fully discrete (k + 1)× (k + 1)-block-system of the In-problem reads as
follows:

Find ξjn ∈ RM, j = 1, . . . , k + 1, such that

k+1∑
j=1

αdi,j
{
M + Cjn

}
ξjn +

τn
2
Ainξ

i
n = βdi

{
M + C0

n

}
ξ0
n +

τn
2
F in, i = 1, . . . , k + 1, (20)

where ξjn denotes the nodal vector of U jn,h ∈ Vh. The vector ξ0
n is obtained either from the discrete initial

condition uu,0 (for n = 1) or by ξ0
n := ξk+1

n−1 (for n ≥ 2).
In the following, we presents the schemes for the cases k = 0 and k = 1.

SUPG/dG(0). The 1-point Gauß-Radau formula with point tn,1 = tn and weight ω̂1 = 2 gives the well-
known implicit Euler method, i.e., the In-problem is the following one-block equation for ξ1

n ∈ RM:(
M + C1

n + τnA
1
n

)
ξ1
n = (M + C0

n)ξ0
n + τnF

1
n .

SUPG/dG(1). The 2-points Gauß-Radau formula with points tn,1 = tn−1 + τn/3, tn,2 = tn and weights
ω̂1 = 3/2, ω̂2 = 1/2 yields on the time interval In the following coupled (2×2)-block-system for ξ1

n, ξ
2
n ∈ RM:[

3
4 (M + C1

n) + τn
2 A

1
n

1
4 (M + C2

n)

− 9
4 (M + C1

n) 5
4 (M + C2

n) + τn
2 A

2
n

][
ξ1
n

ξ2
n

]
=

[
(M + C0

n)ξ0
n + τn

2 F
1
n

−(M + C0
n)ξ0

n + τn
2 F

2
n

]
.

4. Spatial stabilization by the LPS method

In this section we consider the local projection stabilization (LPS) method. Compared to the SUPG
method the LPS method is weakly consistent only. However, its application does not required the computa-
tion of the second order derivatives and time derivatives. Hence, it can be easily applied to time-dependent
problems. Furthermore, it is possible to relax the strong coupling between various components of the solution
in the SUPG stabilization.
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We concentrate on the one-level local projection stabilization method in which approximation and
projection spaces are defined on the same mesh. Let D(K), K ∈ Th, be finite dimensional spaces and
πK : L2(K)→ D(K) the local L2 projection intoD(K). The local fluctuation operator κK : L2(K)→ L2(K)
is given by κKv := v − πKv. The stabilization term Sh is defined by

Sh(uh, vh) :=
∑
K∈Th

µK
(
κK∇uh, κK∇vh

)
K

(21)

where µK , K ∈ Th, are user chosen non-negative constants. The local projection stabilization gives additional
control on the fluctuation of the gradient.

The stabilized semi-discrete problem for uh reads:

Find uh ∈ H1(0, T ;Vh) such that uh(0) = uh,0 and for almost all t ∈ (0, T ](
u′h(t), vh

)
+ aLPS

(
t;uh(t), vh

)
=
(
f, vh

)
∀vh ∈ Vh (22)

where the stabilized bilinear form aLPS(t; ·, ·) is given by

aLPS(t;uh, vh) := a(t;uh, vh) + Sh(uh, vh).

The mesh-dependent norm associated with aLPS is given by

|||v|||LPS :=

{
ε|v|21 + σ0‖v‖20 +

∑
K∈Th

µK‖κh∇v‖20,K
}1/2

.

The LPS discretization of the steady-state convection-diffusion problem (9) reads
Find Uh ∈ Vh such that

aLPS(Uh, vh) = (f, vh) ∀vh ∈ Vh
where aLPS is independent of time.

In order to get suitable results, the approximation space Vh and and local projection spaces D(K),
K ∈ Th, have to fulfill certain compatibility conditions, see [13]. Compared to standard finite element
spaces, the approximation spaces are locally enriched by bubble functions.

The following a priori error estimate for the steady-state convection-diffusion problem (9) is well known,
see [30, Theorem 3.74].

Theorem 2. Let the data of (9) be sufficiently smooth. We choose the stabilization parameters µK = µ0hK ,
K ∈ Th, with a positive constant µ0. Furthermore, we use enriched elements of order r and projection spaces
D(K) = Pr−1(K). Then, there exists a positive constant C independent of h and ε such that the error
estimate

‖U − Uh‖LPS ≤ C(ε1/2 + h1/2)hr‖U‖r+1

holds true.

The application of cGP and dG time discretizations to spatial discretisations stabilized by the local pro-
jection method follows the same lines as for SUPG/cGP and SUPG/dG methods. Hence, we will concentrate
on the main differences.

The matrices Ajn are now defined using the local projection bilinear form aLPS, i.e.,

(Ajn)s,ν := aLPS(tn,j ; bν , bs),

where the time-dependence of Ajn comes from the time-dependent coefficients b and c.
Since there is no coupling term between the time derivative and the derivative in streamline direction,

the matrices Cjn are no longer present. This simplifies the resulting discrete systems and has a positive
influence on the assembling time. Let again ξjn denote the nodal vector of U jn,h ∈ Vh.
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Finally we present the fully discrete systems for LPS/cGP and LPS/dG.
The LPS/cGP(k) methods reads:

Find ξjn ∈ RM, j = 1, . . . , k, such that

k∑
j=0

αci,jMξ
j
n +

τn
2
Ainξ

i
n =

τn
2

{
F in + βci

(
F 0
n −A0

nξ
0
n

)}
, i = 1, . . . , k.

Note that ξ0
n is given either via the initial condition uh,0 for n = 0 or by ξ0

n = ξkn−1 for n ≥ 2.
The LPS/dG(k) methods is given by

Find ξjn ∈ RM, j = 1, . . . , k + 1, such that

k+1∑
j=1

αdi,jMξ
j
n +

τn
2
Ainξ

i
n = βdiMξ

0
n +

τn
2
F in, i = 1, . . . , k + 1. (23)

The nodal vector ξ0
n is obtained either from the initial condition uh,0 for n = 0 or by ξ0

n = ξk+1
n−1 for n ≥ 2.

5. Numerical tests

In this section we present some numerical experiments to assess accuracy and performance of combi-
nations of spatial stabilization techniques with higher order variational time discretization schemes. All
computations were performed with the finite element code MooNMD [31].

In our numerical calculations for the SUPG stabilization, we applied Pr-elements on triangles and mapped
Qr-elements on quadrilaterals, see [32]. For the LPS stabilization, the local projection space D(K) =
Pr−1(K) together with locally enriched approximation spaces were used on both triangles and quadrilaterals.
On triangular cells, the local approximation space is given by

Pbubble
r (K) := Pr(K) + b4,K · Pr−1(K)

where b4,K denotes a cubic bubble function on K which vanishes on ∂K. On quadrilaterals, mapped finite

element spaces [32] were used where the enriched spaces on the reference cell K̂ = (−1, 1)2 are defined by

Qbubble
r (K̂) := Qr(K̂) + span

{
b̂�x̂

r−1
i , i = 1, 2

}
with the biquadratic bubble function b̂� = (1− x̂2

1)(1− x̂2
2) on the reference square K̂.

We will use

‖v‖cGP :=

{∫ T

0

(
‖v′(t)‖20 + ‖v(t)‖2S

)
dt

}1/2

,

‖v‖dG :=

{∫ T

0

‖v(t)‖2S dt+
1

2

N−1∑
n=1

‖[v]n‖20 +
1

2
‖v+

0 ‖20 +
1

2
‖v−N‖

2
0

}1/2

as the norms associated with the cGP and the dG methods, respectively, where ‖ · ‖S corresponds to the
spatial stabilization, i.e., ‖ · ‖S = ||| · |||SUPG or ‖ · ‖S = ||| · |||LPS. Furthermore, errors in the norm

‖v‖L2(L2) :=

{∫ T

0

‖v(t)‖20 dt

}1/2

will be considered.
Combining the known error estimates for temporal discretizations of ordinary differential equations [20,

29, 33], with the established error estimates for stabilized spatial discretizations on sequences of successively
refined meshes [30], we expect the following error estimates.
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Theorem 3. Let the data of problem (1) be sufficiently smooth. For the SUPG stabilization in space, we
use element of order r and parameters δK according to (8) and (10). If LPS is used, we choose enriched
elements of order r and D(K) = Pr−1(K) as local projection space. The LPS parameters µK are chosen as
µK = µ0hK , K ∈ Th, with a positive constant µ0. Then, there exists a positive constant C independent of
ε, h, and τ such that we have

‖u− uh,τ‖cGP ≤ C
[
(ε1/2 + h1/2)hr + τk

]
, ‖u− uh,τ‖L2(L2) ≤ C

(
hr+1 + τk+1

)
for the cGP(k) method and

‖u− uh,τ‖dG ≤ C
[
(ε1/2 + h1/2)hr + τk+1/2

]
, ‖u− uh,τ‖L2(L2) ≤ C

(
hr+1 + τk+1

)
for the dG(k) method. In both cases the constant C depends on u.

The discrete `∞-norm is defined by

‖v‖∞ := max
1≤n≤N

‖v(tn)‖0.

It is known from [29] and [33] that the methods cGP(k) and dG(k) are superconvergent of order 2k and
2k + 1 at the discrete time points tn, n = 1, . . . , N , respectively. Combining this with estimates for the
spatial error, we expect the following estimate for the error in the `∞-norm.

Theorem 4. Let u be the solution of problem (1). Denote by uh,τ either the solution of the fully discrete
cGP(k) or the solution of the fully discrete dG(k) method. If SUPG is applied, elements of order r and
stabilization parameters δK according to (8) and (10) were used. In case of LPS, enriched element of order
r, D(K) = Pr−1(K), µK = µ0 hK were used. Then, the error estimate

‖u− uh,τ‖∞ ≤ C
(
τ2k + hr+1

)
holds true for the cGP(k) method while we have the error estimate

‖u− uh,τ‖∞ ≤ C
(
τ2k+1 + hr+1

)
for the dG(k) method where the constant C in both cases depends on u, but is independent of ε, h, and τ .

Following [20], a simple post-processing of the time-discrete solutions uh,τ allows to obtain numerical
approximations which are in the integral-based norms ‖ · ‖dG, ‖ · ‖cGP, and ‖ · ‖L2(L2) one order better.

First we describe the post-processing for time discretizations by cGP(k). Let uh,τ denote the solution of
SUPG/cGP(k) or LPS/cGP(k), respectively. The post-processed solution Πuh,τ on the time interval In is
given by

(Πuh,τ )(t) = uh,τ (t) + anζn(t), t ∈ In,

where
ζn(t) =

τn
2
ζ̂(t̂), t̂ := T−1

n (t),

with Tn from (12). The polynomial ζ̂ ∈ Pk+1 vanishes in all Gauß-Lobatto points t̂j , j = 0, . . . , k, and is

scaled such that ζ̂ ′(1) = 1. The nodal vector γn of the finite element function an ∈ Vh is the solution of

Mγn = F kn −Aknξ
k
n −Mηkn

where ηkn denotes the nodal representation of u′h,τ (tn) ∈ Vh. In the case that SUPG is used as spatial

discretization, the matrix M has to be replaced at both occurrences by M + Ckn.
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The post-processing of time discretizations by dG(k) is even simpler. The post-processed solution Πuh,τ
of the solution uh,τ of SUPG/dG(k) or LPS/dG(k) on the interval In can be represented as

(Πuh,τ )(t) = uh,τ (t) + bnϑn(t), t ∈ In,

where
ϑn(t) =

τn
2
ϑ̂(t̂), t̂ := T−1

n (t),

with Tn from (12). The polynomial ϑ̂ ∈ Pk+1 is uniquely defined by ϑ̂(t̂j) = 0 for all Gauß-Radau points t̂j ,

j = 1, . . . , k + 1, and ϑ̂′(1) = 1. The finite element function bn ∈ Vh is obtained by

bn :=
1

ϑn(tn−1)

(
u−n−1 − u

+
n−1

)
,

i.e., it is just the scaled difference between the initial condition u−n−1 at t = tn−1 and the calculated solution

u+
n−1 at the same place t = tn−1.

The expected error estimates for the post-processed solution Πuh,τ are collected in the following theorem.

Theorem 5. Let u be the solution of the problem (1) and Πuh,τ the post-process solution of a time discretiza-
tion by cGP(k) or dG(k). For the SUPG stabilization in space, we use element of order r and parameters
δK according to (8) and (10). If LPS is used, we choose enriched elements of order r and D(K) = Pr−1(K)
as local projection space. The LPS parameters µK are chosen as µK = µ0hK with a positive constant µ0.
Then, there exists a positive constant C depending on u, but independent of ε, h, and τ , such that the error
estimates

‖u−Πuh,τ‖cGP ≤ C
[
(ε1/2 + h1/2)hr + τk+1

]
, ‖u−Πuh,τ‖L2(L2) ≤ C

(
hr+1 + τk+2

)
for the post-processed cGP(k) method and

‖u−Πuh,τ‖dG ≤ C
[
(ε1/2 + h1/2)hr + τk+2

]
, ‖u−Πuh,τ‖L2(L2) ≤ C

(
hr+1 + τk+2

)
hold true for the post-processed dG(k) method.

5.1. An example with dominating time error

To assess the effect of the time discretization, we exclude the spatial error in the this example. We
consider problem (1) on Ω = (0, 1)2 with ε = 10−8, b = (1, 2), σ = 1, and T = 1. The right-hand side f and
the initial condition u0 are chosen such that

u(t, x, y) = x(1− x)y(1− y) sin(50t)

is the solution of (1) equipped with homogeneous Dirichlet boundary conditions.
We consider third order elements on a mesh consisting of 16× 16 squares. This means that Q3 elements

are used for SUPG while Qbubble
3 elements with projection onto P2(K) are taken for LPS. Note that for any

time t the solution u can be represented exactly by a function from the finite element space Vh. Hence, all
occurring errors will result from the temporal discretization. The higher order time discretization methods
cGP(k) and dG(k) with k = 2 and k = 3 are applied.

We report in Tables 1–8 the errors and convergence orders for the methods cGP(k) and dG(k), k = 2, 3,
in combination with spatial stabilizations by SUPG and LPS, respectively. We see that both cGP(k) and
dG(k) are accurate of order k + 1 in the L2(L2)-norm while the orders k and k + 1/2 are obtained in
cGP-norm and the dG-norm, respectively. These results are in agreement with Theorem 3.

It can be seen from the Tables 3, 4 and 7, 8 that, as predicted by Theorem 5, the post-processing allows
to get solutions which provide the convergence order k+ 2 in the L2(L2)-norm while the convergence orders
k + 1 and k + 2 in the cGP-norm and dG-norm are obtained, respectively.
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Table 1: Example 5.1: errors and convergence orders for SUPG/cGP(2) and LPS/cGP(2)-method.

‖u− uh,τ‖L2(L2) ‖u− uh,τ‖∞ ‖u− uh,τ‖cGP

SUPG LPS SUPG LPS SUPG LPS
τ error order error order error order error order error order error order

1/80 1.028-3 1.029-3 3.832-5 4.346-5 5.193-1 5.193-1
1/160 1.281-4 3.00 1.281-4 3.00 2.182-6 4.13 2.584-6 4.07 1.322-1 1.97 1.322-1 1.97
1/320 1.603-5 3.00 1.605-5 3.00 1.340-7 4.03 1.608-7 4.01 3.320-2 1.99 3.320-2 1.99
1/640 2.004-6 3.00 2.004-6 3.00 8.344-9 4.01 1.005-8 4.00 8.309-3 2.00 8.309-3 2.00
1/1280 2.505-7 3.00 2.505-7 3.00 5.210-10 4.00 6.280-10 4.00 2.078-3 2.00 2.078-3 2.00
1/2560 3.131-8 3.00 3.131-8 3.00 3.256-11 4.00 3.925-11 4.00 5.195-4 2.00 5.195-4 2.00
1/5120 3.914-9 3.00 3.914-9 3.00 2.035-12 4.00 2.453-12 4.00 1.299-4 2.00 1.299-4 2.00
theory 3 3 4 4 2 2

Table 2: Example 5.1: errors and convergence orders for SUPG/cGP(3) and LPS/cGP(3).

‖u− uh,τ‖L2(L2) ‖u− uh,τ‖∞ ‖u− uh,τ‖cGP

SUPG LPS SUPG LPS SUPG LPS
τ error order error order error order error order error order error order

1/40 1.742-3 1.743-3 9.195-5 9.904-5 6.190-1 6.190-1
1/80 1.138-4 3.94 1.138-4 3.94 5.873-7 7.29 7.528-7 7.04 8.547-2 2.86 8.547-2 2.86
1/160 7.229-6 3.98 7.229-6 3.98 9.002-9 6.03 1.217-8 5.95 1.095-2 2.97 1.095-2 2.95
1/320 4.537-7 3.99 4.537-7 3.99 1.427-10 5.98 1.931-10 5.98 1.377-3 2.99 1.377-3 2.99
1/640 2.839-8 4.00 2.839-8 4.00 2.248-12 5.99 3.030-12 5.99 1.723-4 3.00 1.723-4 3.00
1/1280 1.775-9 4.00 1.775-9 4.00 3.522-14 6.00 4.736-14 6.00 2.155-5 3.00 2.155-5 3.00
theory 4 4 6 6 3 3

Table 3: Example 5.1: post-processed errors and convergence orders for SUPG/cGP(2) and LPS/cGP(2)-method.

‖u−Πuh,τ‖L2(L2) ‖u−Πuh,τ‖cGP

SUPG LPS SUPG LPS
τ error order error order error order error order

1/80 4.866-4 4.869-4 1.528-1 1.528-1
1/160 3.036-5 4.00 3.038-5 4.00 1.988-2 2.94 1.988-2 2.94
1/320 1.898-6 4.00 1.900-6 4.00 2.510-3 2.99 2.510-3 2.99
1/640 1.186-7 4.00 1.187-7 4.00 3.145-4 3.00 3.145-4 3.00
1/1280 7.415-9 4.00 7.422-9 4.00 3.934-5 3.00 3.934-5 3.00
1/2560 4.635-10 4.00 4.639-10 4.00 4.918-6 3.00 4.918-6 3.00
1/5120 2.897-11 4.00 2.899-11 4.00 6.148-7 3.00 6.148-7 3.00
theory 4 4 3 3

Furthermore, comparing the numerical errors in Tables 1, 2, and 5, 6, we note that both spatial stabi-
lization techniques perform quite similar. No essential difference can be seen. Comparing the values in the
discrete `∞-norms, it becomes obvious that the cGP(k)-methods, k = 2, 3, are super-convergent of order 4
and 6 while the dG(k)-methods, k = 2, 3, are super-convergent of order 5 and 7. This confirms the theory
given in Theorem 4.

5.2. A boundary layer problem

We will study the influence of the stabilization parameters on the behavior of the solution of a problem
where the solution exhibits exponential boundary layers. To this end, we consider problem (1) on Ω = (0, 1)2

with ε = 10−8, b = (3− tx, 4− t2y)T , σ = 1, and T = 1. The right-hand side f , the initial data u0, and the
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Table 4: Example 5.1: post-processed errors and convergence orders for SUPG/cGP(3) and LPS/cGP(3)-method.

‖u−Πuh,τ‖L2(L2) ‖u−Πuh,τ‖cGP

SUPG LPS SUPG LPS
τ error order error order error order error order

1/40 1.020-3 1.020-3 2.471-1 2.471-1
1/80 3.357-5 4.93 3.357-5 4.93 1.752-2 3.82 1.752-2 3.82
1/160 1.069-6 4.97 1.069-6 4.97 1.130-3 3.96 1.130-3 3.96
1/320 3.357-8 4.99 3.357-8 4.99 7.118-5 3.99 7.118-5 4.00
1/640 1.050-9 5.00 1.050-9 5.00 4.458-6 4.00 4.458-6 4.00
1/1280 3.283-11 5.00 3.283-11 5.00 2.787-7 4.00 2.787-7 4.00
1/2560 1.026-12 5.00 1.026-12 5.00 1.742-8 4.00 1.742-8 4.00
1/5120 3.230-14 5.00 3.231-14 5.00 1.089-9 4.00 1.089-9 4.00
theory 5 5 4 4

Table 5: Example 5.1: errors and convergence orders for SUPG/dG(2) and LPS/dG(2).

‖u− uh,τ‖L2(L2) ‖u− uh,τ‖∞ ‖u− uh,τ‖dG
SUPG LPS SUPG LPS SUPG LPS

τ error order error order error order error order error order error order
1/40 6.412-3 6.414-3 8.729-4 8.784-4 8.543-2 8.526-2
1/80 8.456-4 2.92 8.456-4 2.92 1.599-5 5.77 1.627-5 5.75 1.781-2 2.26 1.780-2 2.26
1/160 1.080-4 2.97 1.080-4 2.97 4.552-7 5.14 4.710-7 5.11 3.294-3 2.44 3.293-3 2.43
1/320 1.358-5 2.99 1.358-5 2.99 1.392-8 5.03 1.446-8 5.03 5.875-4 2.49 5.875-4 2.49
1/640 1.700-6 3.00 1.700-6 3.00 4.327-10 5.01 4.501-10 5.01 1.040-4 2.50 1.040-4 2.50
1/1280 2.125-7 3.00 2.125-7 3.00 1.350-11 5.00 1.405-11 5.00 1.838-5 2.50 1.838-5 2.50
1/2560 2.657-8 3.00 2.657-8 3.00 4.226-13 5.00 4.397-13 5.00 3.248-6 2.50 3.248-6 2.50
1/5120 3.321-9 3.00 3.321-9 3.00 1.335-14 4.98 1.401-14 4.97 5.741-7 2.50 5.741-7 2.50
theory 3 3 5 5 2.5 2.5

Table 6: Example 5.1: errors and convergence orders for SUPG/dG(3) and LPS/dG(3).

‖u− uh,τ‖L2(L2) ‖u− uh,τ‖∞ ‖u− uh,τ‖dG
SUPG LPS SUPG LPS SUPG LPS

τ error order error order error order error order error order error order
1/40 1.479-3 1.479-3 2.870-5 3.015-5 2.507-2 2.505-2
1/80 1.017-4 3.86 1.017-4 3.86 1.264-7 7.83 1.413-7 7.74 2.544-3 3.30 2.543-3 3.30
1/160 6.514-6 3.96 6.514-6 3.96 1.140-9 6.79 1.042-9 7.08 2.310-4 3.46 2.309-4 3.46
1/320 4.097-7 3.99 4.097-7 3.99 1.187-11 6.59 8.350-12 6.96 2.056-5 3.49 2.056-5 3.49
1/640 2.564-8 4.00 2.564-8 4.00 1.151-13 6.69 6.621-14 6.99 1.821-6 3.50 1.820-6 3.50
1/1280 1.603-9 4.00 1.603-9 4.00 1.087-15 6.72 7.630-16 6.44 1.610-7 3.50 1.610-7 3.50
theory 4 4 7 7 3.5 3.5

Dirichlet boundary conditions are chosen such that

u(t, x, y) = sin(x)
(

1− e−(2+cos 2t)(1−x)/ε
)

sin(2y)
(

1− e−(3+sin t)(1−y)/ε
)

is the solution of (1). Note that u possesses exponential boundary layers at x = 1 and y = 1.
We restrict our study to the methods cGP(2) and dG(1) in time, regular meshes of squares, and Q2-

elements for SUPG and Qbubble
2 -elements with projection onto P1(K) for LPS.

To see the influence of the stabilization parameters, we set δK = δ0hK for SUPG and µk = µ0hK for
LPS. The constants δ0 and µ0 are varied across the wide range from 10−6 to 106.

The computations were carried out on the refinement levels 4–7 (corresponding to 16×16 up to 128×128

squares) and with a time step length τ = 1/160. All errors were computed on the subdomain Ω̃ :=
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Table 7: Example 5.1: post-processed errors and convergence orders for SUPG/dG(2) and LPS/dG(2)-method.

‖u−Πuh,τ‖L2(L2) ‖u−Πuh,τ‖dG
SUPG LPS SUPG LPS

τ error order error order error order error order
1/20 3.895-2 3.926-2 5.676-2 4.664-2
1/40 3.605-3 3.43 3.609-3 3.44 5.165-3 3.46 3.668-3 4.00
1/80 2.283-4 3.98 2.284-4 3.98 2.892-4 4.16 2.287-4 3.98
1/160 1.446-5 3.98 1.447-5 3.98 1.810-5 4.00 1.447-5 4.00
1/320 9.074-7 4.00 9.074-7 4.00 1.132-6 4.00 9.075-7 4.00
1/640 5.677-8 4.00 5.677-8 4.00 7.076-8 4.00 5.677-8 4.00
1/1280 3.549-9 4.00 3.549-9 4.00 4.423-9 4.00 3.549-9 4.00
1/2560 2.218-10 4.00 2.218-10 4.00 2.764-10 4.00 2.218-10 4.00
1/5120 1.387-11 4.00 1.387-11 4.00 1.728-11 4.00 1.387-11 4.00
theory 4 4 4 4

Table 8: Example 5.1: post-processed errors and convergence orders for SUPG/dG(3) and LPS/dG(3)-method.

‖u−Πuh,τ‖L2(L2) ‖u−Πuh,τ‖cGP

SUPG LPS SUPG LPS
τ error order error order error order error order

1/20 1.272-2 3.77 1.274-2 3.78 1.806-2 3.95 1.310-2 4.04
1/40 5.604-4 4.51 5.605-4 4.51 7.284-4 4.63 5.617-4 4.54
1/80 1.909-5 4.88 1.909-5 4.88 2.390-5 4.93 1.909-5 4.88
1/160 6.101-7 4.97 6.101-7 4.97 7.609-7 4.97 6.101-7 4.97
1/320 1.918-8 4.99 1.918-8 4.99 2.390-8 4.99 1.918-8 4.99
1/640 6.001-10 5.00 6.001-10 5.00 7.477-10 5.00 6.001-10 5.00
1/1280 1.876-11 5.00 1.876-11 5.00 2.338-11 5.00 1.876-11 5.00
1/2560 5.863-13 5.00 5.863-13 5.00 7.306-13 5.00 5.864-13 5.00
1/5120 1.871-14 5.00 1.872-14 4.96 2.422-14 5.00 1.886-14 4.97
theory 5 5 5 5

(0, 3/4)× (0, 3/4) which excludes all layers. Let

‖v‖1 :=

{∫ T

0

‖v(t)‖2
0,Ω̃

dt

}1/2

and ‖v‖2 :=

{∫ T

0

‖v(t)‖2
S,Ω̃

dt

}1/2

denote two norms where all included spatial integrals are restricted to Ω̃.
First we consider the cGP(2) method with both spatial stabilization techniques. Figure 1 plots the

errors for SUPG/cGP(2) in the norms ‖ · ‖1 and ‖ · ‖2 versus the constant δ0 inside the definition of the
stabilization parameters. The corresponding results for LPS/cGP(2) with respect to the constant µ0 are
shown in Figure 2. Too small constants δ0 and µ0 result in large errors since the spatial discretization is
under-stabilized. But also too large constants produce large errors due to over-stabilization. Comparing the
results of cGP(2) combined with LPS and SUPG, we see that the optimal constant µ0 is independent of the
refinement level while the optimal constant δ0 decreases from one mesh to the next finer one.

We consider now the influence of the constants δ0 and µ0 on the errors of the methods SUPG/dG(1) and
LPS/dG(1). The corresponding errors in the norms ‖ · ‖1 and ‖ · ‖2 versus δ0 and µ0 are shown in Figures 3
and 4. The principal behavior of the dG(1) discretization in time coincides with the results of the cGP(2)
method. Too small and too large constants provide large errors due to under- and over-stabilization. Also
for the dG(1) method in time, the optimal constant δ0 for SUPG depends on the mesh while the optimal
value for µ0 is mesh-independent.

Comparing in Figures 1 and 3 the results for SUPG and both considered time discretizations in the
norms ‖ · ‖1 and ‖ · ‖2, we observe that the ‖ · ‖1-norm remains bounded even for very large values for the
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Figure 1: Example 5.2: errors in the norms ‖ ·‖1 (left) and ‖ ·‖2 (right) versus the constant δ0 for SUPG/cGP(2) on refinement
levels 4–7.
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Figure 2: Example 5.2: errors in the norms ‖ · ‖1 (left) and ‖ · ‖2 (right) versus the constant µ0 for LPS/cGP(2) on refinement
levels 4–7.
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Figure 3: Example 5.2: errors in the norms ‖ · ‖1 (left) and ‖ · ‖2 (right) versus the constant δ0 for SUPG/dG(1) on refinement
levels 4–7.

constant δ0 while the ‖·‖2 has no upper bound. The reason is that ‖·‖2 includes a term which increases with
increasing constant δ0 inside the stabilization term. For the LPS stabilization, the behavior is different, see
Figures 2 and 4. It seems that the error in both norms is bounded even if the constant µ0 in the stabilization
parameter µK = µ0 hK is very large. This indicates that the over-stabilization by large µ0 leads to solutions
with almost vanishing fluctuations. Hence, the constant µ0 has less influence on the norm.

The pictures in Fig. 5 show the computed solution at the final time T = 1 for different time discretization
methods and different spatial discretizations with local projection stabilization. We clearly observe that the
numerical solution obtained with a suitably chosen stabilization (middle column) shows neither oscillations
nor smearing. For under-stabilization (left column), the numerical solutions contain large oscillations all
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Figure 4: Example 5.2: errors in the norms ‖ · ‖1 (left) and ‖ · ‖2 (right) versus the constant µ0 for LPS/cGP(2) on refinement
levels 4–7.

Figure 5: Example 5.2, Computed solution at final time T = 1, time step length τ = 1/160, LPS/cGP(2) with Qbubble
2

and projection onto P1(K) (upper row), SUPG/cGP(2) with Q2 (bottom row); µ0(δ0) = 10−4 (left), µ0(δ0) = 0.1 (middle),
µ0(δ0) = 100 (right).

over the spatial domain. In the case of over-stabilization (right column), the behavior of LPS and SUPG are
different. The LPS solution has oscillations which are concentrated near the exponential boundary layer. In
contrast, the SUPG solution is smeared but shows no oscillations.

5.3. Body rotating problem

In this section two problems with rotating bodies will be considered. The first one is given on Ω = (0, 1)2

with ε = 10−20, b = (0.5− y, x− 0.5)T , σ = 0, f = 0. The initial condition consists of three disjoint bodies:
a slit cylinder, a cone, and a smooth hump, see left picture of Figure 6. This problem has already been
studied numerically for finite element discretizations, see e.g. [3, 28, 34]. The second problem is given on
the unit circle Ω = {(x1, x2) ∈ R2 : x2

1 + x2
2 < 1} with ε = 10−20, b = (−y, x)T , σ = 0, f = 0. The initial

condition is given by

u0(x, y) =
1

2

{
tanh

(
1000e−10[(x−0.3)2+(y−0.3)2]

)
+ 1
}

and shown in the right picture of Figure 6. A transient transport with this data was considered in [4].
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Figure 6: Example 5.3: initial condition; left: problem in unit square with three bodies, right: problem in unit circle with one
body.

In both examples, rotation is counter-clockwise and the first revolution completes at t = 2π. Due to the
very small diffusion coefficient ε = 10−20, the solution after complete revolutions is essentially the same as
the initial condition.

The aim of these examples is to study the effect of different time discretization schemes in combination
with stabilized finite element methods in space. In particular, we use the methods cGP(2) and dG(1) in
time. Both SUPG and LPS are used as spatial discretization.

We choose for the problem in the unit square a uniform grid consisting of 64 × 64 squares. This leads,
included all Dirichlet nodes, to 98,817 degrees of freedoms for the second order LPS discretization with
Qbubble

2 -elements and projection onto P1(K) and 66,049 degrees of freedom for the second order SUPG
discretization with Q2-elements.

For the problem in the unit circle, triangular meshes were used. The coarsest mesh contains 8 congruent
triangles which are obtained by connecting the origin with 8 equidistant points on the circle line. The
calculations were made on refinement level 5 where the curved boundary was taken into account during
refinement. Including the Dirichlet nodes on the boundary, there were 16,641 degrees of freedom for the
second order SUPG discretization with P2-elements and 41,217 degrees of freedom the second order LPS
discretization with P bubble

2 -elements and projection onto P1(K).
For both problems, we used δK = 0.25hK inside the SUPG stabilization while we set µK = 0.1hK for

LPS. The time step length was fixed to τ = 10−3.
As in [3], we use

var(t) = max
(x,y)∈Ωh

uh(t;x, y)− min
(x,y)∈Ωh

uh(t;x, y)

as measure for under- and overshoots. For calculating the minimal and maximal values of uh we used only
the values at the vertices of underlying mesh. Note that the optimal value of var(t) equals to 1 for all t.

In order to illustrate the solution behavior, we present in Figure 7 for the problem in the unit square with
the three rotating bodies and the combinations SUPG/dG(1), LPS/dG(1), SUPG/cGP(2), and LPS/cGP(2)
cuts along the line y = 0.75 through the midpoint of the slit cylinder after one (in blue) and ten (in
green) complete revolutions together with the initial condition (in red). It is clearly to see that over- and
undershoots occurs near the edges of the cylinder. Both the differences between the two considered spatial
discretizations and the differences between the two applied temporal discretizations are quite small. The
over- and undershoots are of comparable size. The smooth hump was reproduced by all combinations very
well. No undershoots are present near the cone, its height is slightly decreasing with time, and the initially
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Figure 7: Example 5.3: cut along the line y = 0.75 through the midpoint of the slit cylinder; red: initial condition, blue: solution
after one complete revolution (t = 2π), green: solution after ten complete revolutions (t = 20π); from left: SUPG/dG(1),
LPS/dG(1), SUPG/cGP(2), LPS/cGP(2).

sharp tip becomes rounded.
Figure 8 shows for the problem in the circular domain the solution after ten complete revolutions. It can

be seen that all combinations of spatial stabilizations and temporal discretization lead to smeared numerical
solutions. Using the same stabilization method in space, the differences between the time discretizations
are quite small. However, the choice of spatial stabilization method has a much larger influence on the
solution properties. In this example, the local projection stabilization produces a larger smearing compared
to SUPG.

To check the long time behavior of the spurious oscillations measured by var(t), we made computations
for both problem till T = 20π which corresponds to ten complete revolutions. The results are only slightly
influenced by the applied temporal discretization. We present in Figure 9 the results for SUPG/dG(1) and
LPS/dG(1) only. After an initial phase, the quantity var(t) shows a periodic behavior. It is interesting to
observe that LPS is superior to LPS for the problems in the unit square with three rotating bodies while
the problem in the unit circle with one rotating body shows the opposite behavior. We observe for both
problems that var(t) shows for LPS much larger oscillations than for SUPG.

Compared to the unstabilised case, the remaining oscillations are much and located near sharp layers
only. To remove the remaining oscillations, shock or discontinuity capturing methods could be applied. For
an overview, we refer to [16–18] and the references therein.
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