118 research outputs found

    Safety and effectiveness of adalimumab in a clinical setting that reflects Canadian standard of care for the treatment of rheumatoid arthritis (RA): Results from the CanACT study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This multicenter, open-label, prospective, single cohort study evaluated the effectiveness and safety of adalimumab in a clinical setting reflecting the Canadian standard of care for the treatment of patients with rheumatoid arthritis (RA).</p> <p>Methods</p> <p>Patients ≥ 18 years of age with a history of active RA ≥ 3 months and fulfilling Canadian requirements for biological therapy received adalimumab 40 mg subcutaneously every other week for 12 weeks. Pre-study DMARD treatment regimens, corticosteroids, or NSAIDs were allowed throughout the study. The primary effectiveness outcome measure was the mean change in 28-joint disease activity score (DAS28) from baseline to Week 12. Secondary measures included the proportion of patients achieving joint remission (DAS28 < 2.6) and low-disease activity (DAS28 < 3.2) at Week 12, and European League Against Rheumatism (EULAR: moderate and good) and American College of Rheumatology (ACR: ACR20, 50, and 70) responses, as well as responses in ACR core components at Weeks 4, 8, and 12. Subgroup analysis included a comparison of patients naïve to biological DMARD (BDMARD) therapy versus BDMARD-experienced patients. Safety was assessed in terms of adverse and serious adverse events.</p> <p>Results</p> <p>A total of 879 patients (mean disease duration > 12 years) were enrolled; 772 (87.9%) completed the 12-week period. Adalimumab treatment was associated with rapid and sustained improvements in the signs and symptoms of RA. Significant improvements in mean DAS28 score were observed as early as Week 4. After 12 weeks of adalimumab treatment, 15.3% and 28.9% of patients achieved clinical remission and low-disease activity, respectively. Similarly, significant improvements in ACR core components were observed as early as Week 4, with continued improvements occurring through 12 weeks. Patients naïve to BDMARD therapy demonstrated numerically greater clinical responses when compared with patients who had experienced prior BDMARD therapy, although both subgroups were associated with significant improvements from baseline. The rates and types of adverse events, as well as the results of laboratory measures, demonstrated that adalimumab was generally safe and well-tolerated.</p> <p>Conclusions</p> <p>This study demonstrated that, under conditions reflective of the normal clinical practice in Canada, adalimumab is an effective and safe treatment for patients with RA.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT00649545">NCT00649545</a>.</p

    Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    Get PDF
    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts

    Wear and corrosion interactions on titanium in oral environment : literature review

    Get PDF
    The oral cavity is a complex environment where corrosive substances from dietary, human saliva, and oral biofilms may accumulate in retentive areas of dental implant systems and prostheses promoting corrosion at their surfaces. Additionally, during mastication, micromovements may occur between prosthetic joints causing a relative motion between contacting surfaces, leading to wear. Both processes (wear and corrosion) result in a bio-tribocorrosion system once that occurs in contact with biological tissues and fluids. This review paper is focused on the aspects related to the corrosion and wear behavior of titanium-based structures in the oral environment. Furthermore, the clinical relevance of the oral environment is focused on the harmful effect that acidic substances and biofilms, formed in human saliva, may have on titanium surfaces. In fact, a progressive degradation of titanium by wear and corrosion (tribocorrosion) mechanisms can take place affecting the performance of titanium-based implant and prostheses. Also, the formation of wear debris and metallic ions due to the tribocorrosion phenomena can become toxic for human tissues. This review gathers knowledge from areas like materials sciences, microbiology, and dentistry contributing to a better understanding of bio-tribocorrosion processes in the oral environment.(undefined

    Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development

    Get PDF
    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development

    Standard model contribution to the electric dipole moment of the deuteron, 3H, and 3He nuclei

    Full text link

    Renal involvement in autoimmune connective tissue diseases

    Full text link

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore