648 research outputs found

    Perioperative Quality Initiative (POQI) consensus statement on fundamental concepts in perioperative fluid management: fluid responsiveness and venous capacitance

    Get PDF
    Background: Optimal fluid therapy in the perioperative and critical care settings depends on understanding the underlying cardiovascular physiology and individualizing assessment of the dynamic patient state. Methods: The Perioperative Quality Initiative (POQI-5) consensus conference brought together an international team of multidisciplinary experts to survey and evaluate the literature on the physiology of volume responsiveness and perioperative fluid management. The group used a modified Delphi method to develop consensus statements applicable to the physiologically based management of intravenous fluid therapy in the perioperative setting. Discussion: We discussed the clinical and physiological evidence underlying fluid responsiveness and venous capacitance as relevant factors in fluid management and developed consensus statements with clinical implications for a broad group of clinicians involved in intravenous fluid therapy. Two key concepts emerged as follows: (1) The ultimate goal of fluid therapy and hemodynamic management is to support the conditions that enable normal cellular metabolic function in order to produce optimal patient outcomes, and (2) optimal fluid and hemodynamic management is dependent on an understanding of the relationship between pressure, volume, and flow in a dynamic system which is distensible with variable elastance and capacitance properties

    Phase transitions in biological membranes

    Full text link
    Native membranes of biological cells display melting transitions of their lipids at a temperature of 10-20 degrees below body temperature. Such transitions can be observed in various bacterial cells, in nerves, in cancer cells, but also in lung surfactant. It seems as if the presence of transitions slightly below physiological temperature is a generic property of most cells. They are important because they influence many physical properties of the membranes. At the transition temperature, membranes display a larger permeability that is accompanied by ion-channel-like phenomena even in the complete absence of proteins. Membranes are softer, which implies that phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal propagation phenomena related to nerve pulses are strongly enhanced. The position of transitions can be affected by changes in temperature, pressure, pH and salt concentration or by the presence of anesthetics. Thus, even at physiological temperature, these transitions are of relevance. There position and thereby the physical properties of the membrane can be controlled by changes in the intensive thermodynamic variables. Here, we review some of the experimental findings and the thermodynamics that describes the control of the membrane function.Comment: 23 pages, 15 figure

    Membranes by the Numbers

    Get PDF
    Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this article, I review the quantitative parameters that characterize the mechanical, electrical and transport properties of membranes and carry out a number of corresponding order of magnitude estimates that help us understand the values of those parameters.Comment: 27 pages, 12 figure

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Association between intra-radicular posts and periapical lesions in endodontically treated teeth

    Get PDF
    Introduction: A significant number of endodontically treated teeth restored with posts have associated periapical lesions, and several authors have discussed the probable causes of the development of these. Attention has been focused on restorative procedures performed after endodontic treatment and their association with the prognosis of endodontic therapy because a number of root-filled teeth will require post- and core-retained restorations. Purpose: The purpose of this study was to evaluate, by examination of periapical radiographs, whether the placement of intra-radicular posts in endodontically treated teeth may act as a risk factor for development of periapical lesions. Material and Methods: This case-control study analyzed periapical radiographs of 72 endodontically treated teeth with coronal restorations. All radiographs were obtained from a single private practice. Specimens were assigned to 2 groups: Group 1 (control) was composed of teeth without periapical lesions and Group 2 (case) was composed of teeth with periapical lesions. The number of teeth with and without posts in each group was recorded. Three calibrated examiners analyzed the radiographs visually under X4 magnification. Results: In Group 1, 28 (65.1%) out of 43 teeth were restored with posts. In Group 2, 24 (82.8%) out of 29 teeth had intra-radicular posts. The interpretation of chi-square test showed that these percentages were not significantly different (x²=2.687; p=0.101). Odds ratio was 2.571 (0.815-8.118), which indicates that there was no statistically significant association between periapical lesions and posts. Conclusion: Intra-radicular posts placed in endodontically treated teeth were not a significant risk factor for development of periapical lesions in the practice where the cohort of patients was treated

    DJ-1 contributes to adipogenesis and obesity-induced inflammation

    Get PDF
    Adipose tissue functions as an endocrine organ, and the development of systemic inflammation in adipose tissue is closely associated with metabolic diseases, such as obesity and insulin resistance. Accordingly, the fine regulation of the inflammatory response caused by obesity has therapeutic potential for the treatment of metabolic syndrome. In this study, we analyzed the role of DJ-1 (PARK7) in adipogenesis and inflammation related to obesity in vitro and in vivo. Many intracellular functions of DJ-1, including oxidative stress regulation, are known. However, the possibility of DJ-1 involvement in metabolic disease is largely unknown. Our results suggest that DJ-1 deficiency results in reduced adipogenesis and the down-regulation of pro-inflammatory cytokines in vitro. Furthermore, DJ-1-deficient mice show a low-level inflammatory response in the high-fat diet-induced obesity model. These results indicate previously unknown functions of DJ-1 in metabolism and therefore suggest that precise regulation of DJ-1 in adipose tissue might have a therapeutic advantage for metabolic disease treatment.open0

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore