1,632 research outputs found

    Evidence of Fragmenting Dust Particles from Near-Simultaneous Optical and Near-IR Photometry and Polarimetry of Comet 73P/Schwassmann-Wachmann 3

    Get PDF
    We report imaging polarimetry of segments B and C of the Jupiter-family Comet 73P/Schwassmann-Wachmann 3 in the I and H bandpasses at solar phase angles of approximately 35 and 85deg. The level of polarization was typical for active comets, but larger than expected for a Jupiter-family comet. The polarimetric color was slightly red (dP/dL = +1.2 +/- 0.4) at a phase angle of ~ 35deg and either neutral or slightly blue at a phase angle of ~ 85deg. Observations during the closest approach from 2006 May 11-13 achieved a resolution of 35 km at the nucleus. Both segments clearly depart from a 1/rho surface brightness for the first 50 - 200 km from the nucleus. Simulations of radiation driven dust dynamics can reproduce some of the observed coma morphology, but only with a wide distribution of initial dust velocities (at least a factor of 10) for a given grain radius. Grain aggregate breakup and fragmentation are able to reproduce the observed profile perpendicular to the Sun-Comet axis, but fit the observations less well along this axis (into the tail). The required fragmentation is significant, with a reduction in the mean grain aggregate size by about a factor of 10. A combination of the two processes could possibly explain the surface brightness profile of the comet.Comment: 40 pages including 11 figure

    HOPS 361-C's Jet Decelerating and Precessing Through NGC 2071 IR

    Full text link
    We present a two-epoch Hubble Space Telescope (HST) near-infrared (NIR) study of NGC 2071 IR highlighting HOPS 361-C, a protostar producing an arced 0.2 parsec-scale jet. Proper motions for the brightest knots decrease from 350 to 100 km/s with increasing distance from the source. The [Fe II] and Paβ\beta emission line intensity ratio gives a velocity jump through each knot of 40-50 km/s. We show a new [O I] 63 μ\rm \mum spectrum taken with the German REciever for Astronomy at Terahertz frequencies (GREAT) instrument aboard Stratospheric Observatory for Infrared Astronomy (SOFIA), which give a low jet inclination. Proper motions and jump velocities then estimate total flow speed throughout the jet. We model knot positions and speeds with a precessing jet that decelerates within the host molecular cloud. The measurements are matched with a precession period of a few thousand years and half opening angle of 15deg\rm\deg. The [Fe II] 1.26 μ\rm \mum to 1.64 μ\rm \mum line intensity ratio gives the extinction to each knot ranging from 5-30 mag. Relative to \sim14 mag of extinction through the cloud from C18^{18}O emission maps, the jet is well embedded at a fractional depth from 1/5 to 4/5, and can interact with the cloud. Our model suggests the jet is locally dissipated over 0.2 pc. This may be because knots sweep through a wide angle, giving the cloud time to fill in cavities opened by the jet. This contrasts with nearly unidirectional protostellar jets that puncture host clouds and can propagate significantly further than a quarter pc.Comment: 24 pages, 9 figures, submitted to Ap

    Prospects For Identifying Dark Matter With CoGeNT

    Full text link
    It has previously been shown that the excess of events reported by the CoGeNT collaboration could be generated by elastically scattering dark matter particles with a mass of approximately 5-15 GeV. This mass range is very similar to that required to generate the annual modulation observed by DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center identified within the data of the Fermi Gamma Ray Space Telescope. To confidently conclude that CoGeNT's excess is the result of dark matter, however, further data will likely be needed. In this paper, we make projections for the first full year of CoGeNT data, and for its planned upgrade. Not only will this body of data more accurately constrain the spectrum of nuclear recoil events, and corresponding dark matter parameter space, but will also make it possible to identify seasonal variations in the rate. In particular, if the CoGeNT excess is the product of dark matter, then one year of CoGeNT data will likely reveal an annual modulation with a significance of 2-3σ\sigma. The planned CoGeNT upgrade will not only detect such an annual modulation with high significance, but will be capable of measuring the energy spectrum of the modulation amplitude. These measurements will be essential to irrefutably confirming a dark matter origin of these events.Comment: 6 pages, 6 figure

    PTF10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99

    Get PDF
    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local Universe (distance less than 200 Mpc). Here, we report the discovery of PTF10fqs, a transient in the luminosity "gap" between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of Mr = -12.3, red color (g-r = 1.0) and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H (930 km/s) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to thatof M85OT2006-1, SN2008S, and NGC300OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature (around 8600A) that may suggest very large velocities (10,000 km/s) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring and statistics (e.g. disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.Comment: 12 pages, 12 figures, Replaced with published versio

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    Long-term Death Rates, West Nile Virus Epidemic, Israel, 2000

    Get PDF
    We studied the 2-year death rate of 246 adults discharged from hospital after experiencing acute West Nile Virus infection in Israel during 2000. The age- and sex-adjusted death rates were significantly higher than in the general population. This excess was greater for men. Significant adverse prognostic factors were age, male sex, diabetes mellitus, and dementia

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species

    Epidermolytic Ichthyosis Sine Epidermolysis

    Get PDF
    Epidermolytic ichthyosis (EI) is a rare disorder of cornification caused by mutations in KRT1 and KRT10, encoding two suprabasal epidermal keratins. Because of the variable clinical features and severity of the disease, histopathology is often required to correctly direct the molecular analysis. EI is characterized by hyperkeratosis and vacuolar degeneration of the upper epidermis, also known as epidermolytic hyperkeratosis, hence the name of the disease. In the current report, the authors describe members of 2 families presenting with clinical features consistent with EI. The patients were shown to carry classical mutations in KRT1 or KRT10, but did not display epidermolytic changes on histology. These observations underscore the need to remain aware of the limitations of pathological features when considering a diagnosis of EI
    corecore