215 research outputs found

    Prediction of preterm birth with and without preeclampsia using mid-pregnancy immune and growth-related molecular factors and maternal characteristics.

    Get PDF
    OBJECTIVE:To evaluate if mid-pregnancy immune and growth-related molecular factors predict preterm birth (PTB) with and without (±) preeclampsia. STUDY DESIGN:Included were 400 women with singleton deliveries in California in 2009-2010 (200 PTB and 200 term) divided into training and testing samples at a 2:1 ratio. Sixty-three markers were tested in 15-20 serum samples using multiplex technology. Linear discriminate analysis was used to create a discriminate function. Model performance was assessed using area under the receiver operating characteristic curve (AUC). RESULTS:Twenty-five serum biomarkers along with maternal age <34 years and poverty status identified >80% of women with PTB ± preeclampsia with best performance in women with preterm preeclampsia (AUC = 0.889, 95% confidence interval (0.822-0.959) training; 0.883 (0.804-0.963) testing). CONCLUSION:Together with maternal age and poverty status, mid-pregnancy immune and growth factors reliably identified most women who went on to have a PTB ± preeclampsia

    People of the British Isles: preliminary analysis of genotypes and surnames in a UK control population

    Get PDF
    There is a great deal of interest in fine scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to play a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. Here we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK control population that can be used as a resource by the research community as well as providing fine scale genetic information on the British population. So far, some 4,000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3,865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1,057 samples demonstrates the value of these samples for investigating fine scale population structure within the UK, and shows how this can be enhanced by the use of surnames

    Non-motor predictors of 36-month quality of life after subthalamic stimulation in Parkinson disease.

    Get PDF
    To identify predictors of 36-month follow-up quality of life (QoL) outcome after bilateral subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson’s disease (PD). In this ongoing, prospective, multicenter international study (Cologne, Manchester, London) including 73 patients undergoing STN-DBS, we assessed the following scales preoperatively and at 6-month and 36-month follow-up: PD Questionnaire-8 (PDQ-8), NMSScale (NMSS), Scales for Outcomes in PD (SCOPA)-motor examination, -activities of daily living, and -complications, and levodopa equivalent daily dose (LEDD). We analyzed factors associated with QoL improvement at 36-month follow-up based on (1) correlations between baseline test scores and QoL improvement, (2) step-wise linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions and receiver operating characteristic curves using a dichotomized variable “QoL responders”/“non-responders”. At both follow-ups, NMSS total score, SCOPA-motor examination, and -complications improved and LEDD was reduced significantly. PDQ-8 improved at 6-month follow-up with subsequent decrements in gains at 36-month follow-up when 61.6% of patients were categorized as “QoL non-responders”. Correlations, linear, and logistic regression analyses found greater PDQ-8 improvements in patients with younger age, worse PDQ-8, and worse specific NMS at baseline, such as ‘difficulties experiencing pleasure’ and ‘problems sustaining concentration’. Baseline SCOPA scores were not associated with PDQ-8 changes. Our results provide evidence that 36-month QoL changes depend on baseline neuropsychological and neuropsychiatric non-motor symptoms burden. These findings highlight the need for an assessment of a wide range of non-motor and motor symptoms when advising and selecting individuals for DBS therapy

    Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We introduce Glaucoma Discovery Platform (GDP), an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets.</p> <p>Description</p> <p>Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-<it>Gpnmb<sup>+ </sup></it>strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s) of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM).</p> <p>Conclusion</p> <p>Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages. Datgan and GDP are available from <url>http://glaucomadb.jax.org/glaucoma</url>.</p

    Photon echo studies of photosynthetic light harvesting

    Get PDF
    The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here

    Host Genetics and Environmental Factors Regulate Ecological Succession of the Mouse Colon Tissue-Associated Microbiota

    Get PDF
    Background: The integration of host genetics, environmental triggers and the microbiota is a recognised factor in the pathogenesis of barrier function diseases such as IBD. In order to determine how these factors interact to regulate the host immune response and ecological succession of the colon tissue-associated microbiota, we investigated the temporal interaction between the microbiota and the host following disruption of the colonic epithelial barrier. Methodology/Principal Findings: Oral administration of DSS was applied as a mechanistic model of environmental damage of the colon and the resulting inflammation characterized for various parameters over time in WT and Nod2 KO mice. Results: In WT mice, DSS damage exposed the host to the commensal flora and led to a migration of the tissue-associated bacteria from the epithelium to mucosal and submucosal layers correlating with changes in proinflammatory cytokine profiles and a progressive transition from acute to chronic inflammation of the colon. Tissue-associated bacteria levels peaked at day 21 post-DSS and declined thereafter, correlating with recruitment of innate immune cells and development of the adaptive immune response. Histological parameters, immune cell infiltration and cytokine biomarkers of inflammation were indistinguishable between Nod2 and WT littermates following DSS, however, Nod2 KO mice demonstrated significantly higher tissue-associated bacterial levels in the colon. DSS damage and Nod2 genotype independently regulated the community structure of the colon microbiota

    Positive functioning inventory: initial validation of a 12-item self-report measure of well-being

    Get PDF
    Background: This paper describes the validation of the Positive Functioning Inventory (PFI-12). This is a 12-item self-report tool developed to assess a spectrum of functioning ranging from states of mental distress to states of well-being. Method: Two samples (Sample 1: N = 242, mean age = 20 years. Sample 2: N = 301, mean age = 20 years) completed self-report measures of personality and social, physical and psychological functioning. Results: Evidence is provided for internal-consistency reliability, test-retest reliability, incremental validity, and convergent and discriminant validity in relation to a number of other measures of personality, social, physical and psychological functioning. Conclusion: The tool promises to be useful to practitioners and researchers who wish to assess positive psychological functioning

    arrayMap: A Reference Resource for Genomic Copy Number Imbalances in Human Malignancies

    Get PDF
    Background: The delineation of genomic copy number abnormalities (CNAs) from cancer samples has been instrumental for identification of tumor suppressor genes and oncogenes and proven useful for clinical marker detection. An increasing number of projects have mapped CNAs using high-resolution microarray based techniques. So far, no single resource does provide a global collection of readily accessible oncoge- nomic array data. Methodology/Principal Findings: We here present arrayMap, a curated reference database and bioinformatics resource targeting copy number profiling data in human cancer. The arrayMap database provides a platform for meta-analysis and systems level data integration of high-resolution oncogenomic CNA data. To date, the resource incorporates more than 40,000 arrays in 224 cancer types extracted from several resources, including the NCBI's Gene Expression Omnibus (GEO), EBIs ArrayExpress (AE), The Cancer Genome Atlas (TCGA), publication supplements and direct submissions. For the majority of the included datasets, probe level and integrated visualization facilitate gene level and genome wide data re- view. Results from multi-case selections can be connected to downstream data analysis and visualization tools. Conclusions/Significance: To our knowledge, currently no data source provides an extensive collection of high resolution oncogenomic CNA data which readily could be used for genomic feature mining, across a representative range of cancer entities. arrayMap represents our effort for providing a long term platform for oncogenomic CNA data independent of specific platform considerations or specific project dependence. The online database can be accessed at http://www.arraymap.org.Comment: 17 pages, 5 inline figures, 3 tables, supplementary figures/tables split into 4 PDF files; manuscript submitted to PLoS ON

    Evolutionary and Experimental Assessment of Novel Markers for Detection of Xanthomonas euvesicatoria in Plant Samples

    Get PDF
    BACKGROUND: Bacterial spot-causing xanthomonads (BSX) are quarantine phytopathogenic bacteria responsible for heavy losses in tomato and pepper production. Despite the research on improved plant spraying methods and resistant cultivars, the use of healthy plant material is still considered as the most effective bacterial spot control measure. Therefore, rapid and efficient detection methods are crucial for an early detection of these phytopathogens. METHODOLOGY: In this work, we selected and validated novel DNA markers for reliable detection of the BSX Xanthomonas euvesicatoria (Xeu). Xeu-specific DNA regions were selected using two online applications, CUPID and Insignia. Furthermore, to facilitate the selection of putative DNA markers, a customized C program was designed to retrieve the regions outputted by both databases. The in silico validation was further extended in order to provide an insight on the origin of these Xeu-specific regions by assessing chromosomal location, GC content, codon usage and synteny analyses. Primer-pairs were designed for amplification of those regions and the PCR validation assays showed that most primers allowed for positive amplification with different Xeu strains. The obtained amplicons were labeled and used as probes in dot blot assays, which allowed testing the probes against a collection of 12 non-BSX Xanthomonas and 23 other phytopathogenic bacteria. These assays confirmed the specificity of the selected DNA markers. Finally, we designed and tested a duplex PCR assay and an inverted dot blot platform for culture-independent detection of Xeu in infected plants. SIGNIFICANCE: This study details a selection strategy able to provide a large number of Xeu-specific DNA markers. As demonstrated, the selected markers can detect Xeu in infected plants both by PCR and by hybridization-based assays coupled with automatic data analysis. Furthermore, this work is a contribution to implement more efficient DNA-based methods of bacterial diagnostics

    'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'

    Get PDF
    Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure
    corecore