220 research outputs found

    Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    Get PDF
    BACKGROUND: Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. CONCLUSIONS: We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching

    Exploring the divergence between self-assessment and self-monitoring

    Get PDF
    Many models of professional self-regulation call upon individual practitioners to take responsibility both for identifying the limits of their own skills and for redressing their identified limits through continuing professional development activities. Despite these expectations, a considerable literature in the domain of self-assessment has questioned the ability of the self-regulating professional to enact this process effectively. In response, authors have recently suggested that the construction of self-assessment as represented in the self-regulation literature is, itself, problematic. In this paper we report a pair of studies that examine the relationship between self-assessment (a global judgment of one’s ability in a particular domain) and self-monitoring (a moment-by-moment awareness of the likelihood that one maintains the skill/knowledge to act in a particular situation). These studies reveal that, despite poor correlations between performance and self-assessments (consistent with what is typically seen in the self-assessment literature), participant performance was strongly related to several measures of self-monitoring including: the decision to answer or defer responding to a question, the amount of time required to make that decision to answer or defer, and the confidence expressed in an answer when provided. This apparent divergence between poor overall self-assessment and effective self-monitoring is considered in terms of how the findings might inform our understanding of the cognitive mechanisms yielding both self-monitoring judgments and self-assessments and how that understanding might be used to better direct education and learning efforts

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes

    Get PDF
    Two intramolecular interactions, i.e., (1) hydrogen bond and (2) substituent effect, were analyzed and compared. For this purpose, the geometry of 4- and 5-X-substituted salicylaldehyde derivatives (X = NO2, H or OH) was optimized by means of B3LYP/6-311 + G(d,p) and MP2/aug-cc-pVDZ methods. The results obtained allowed us to show that substituents (NO2 or OH) in the para or meta position with respect to either OH or CHO in H-bonded systems interact more strongly than in the case of di-substituted species: 4- and 3-nitrophenol or 4- and 3-hydroxybenzaldehyde by ∼31%. The substituent effect due to the intramolecular charge transfer from the para-counter substituent (NO2) to the proton-donating group (OH) is ∼35% greater than for the interaction of para-OH with the proton-accepting group (CHO). The total energy of H-bonding for salicylaldehyde, and its derivatives, is composed of two contributions: ∼80% from the energy of H-bond formation and ∼20% from the energy associated with reorganization of the electron structure of the systems in question

    Calculation of molecular thermochemical data and their availability in databases

    Get PDF
    Thermodynamic properties of molecules can be obtained by experiment, by statistical mechanics in conjunction with electronic structure theory and by empirical rules like group additivity. The latter two methods are briefly re-viewed in this chapter. The overview of electronic structure methods is intended for readers less experienced in electronic structure theory and focuses on concepts without going into mathematical details. This is followed by a brief description of group additivity schemes; finally, an overview of databases listing reliable thermochemical data is given

    Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes

    Get PDF
    An assessment of several widely used exchange--correlation potentials in computing charge-transfer integrals is performed. In particular, we employ the recently proposed Coulomb-attenuated model which was proven by other authors to improve upon conventional functionals in the case of charge-transfer excitations. For further validation, two distinct approaches to compute the property in question are compared for a phthalocyanine dimer

    The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.

    Get PDF
    The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome

    Joy leads to overconfidence, and a simple countermeasure

    Get PDF
    Overconfidence has been identified as a source of suboptimal decision making in many real-life domains, with often far-reaching consequences. This study identifies a mechanism that can cause overconfidence and demonstrates a simple, effective countermeasure in an incentive-compatible experimental study. We observed that joy induced overconfidence if the reason for joy (an unexpected gift) was u
    corecore