10 research outputs found

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    Evolution of DNA Sequence Contributions of Mutational Bias and Selection to the Origin of Chromosomal Compartments

    No full text

    Genomic Designing for Climate-Smart Tomato

    No full text
    Tomato is the first vegetable consumed in the world. It is grown in very different conditions and areas, mainly in field for processing tomatoes while fresh-market tomatoes are often produced in greenhouses. Tomato faces many environmental stresses, both biotic and abiotic. Today many new genomic resources are available allowing an acceleration of the genetic progress. In this chapter, we will first present the main challenges to breed climate-smart tomatoes. The breeding objectives relative to productivity, fruit quality, and adaptation to environmental stresses will be presented with a special focus on how climate change is impacting these objectives. In the second part, the genetic and genomic resources available will be presented. Then, traditional and molecular breeding techniques will be discussed. A special focus will then be presented on ecophysiological modeling, which could constitute an important strategy to define new ideotypes adapted to breeding objectives. Finally, we will illustrate how new biotechnological tools are implemented and could be used to breed climate-smart tomatoes

    Bibliography

    No full text
    corecore