78 research outputs found

    "Ius" y "lex" según las definiciones de los "magni hispani"

    Get PDF

    Definición e interpretación del derecho según Michel Villey

    Get PDF
    Michel Villey dedicó toda su fructífera vida de investigador y de maestro a redescubrir el camino clásico, perdido entre las fragosidades del nominalismo, de donde pretendió salir la moderna filosofía del derecho que, con la razón humana autónoma, ha creado monstruos con los que han querido dar vida a los caprichos irracionales y utópicos del voluntarismo. Trató de mostrar, a la fIlosofía contemporánea, la encrucijada a partir de la cual se podría retornar el buen camino. Algunos lo vislumbran hoy en los valores que hallan en las cosas, pero no acaban de reencontrarlo. ¡Dios premie al maestro!, que no sintió ningún temor en proclamarse tomista, ¡cuando la mayor parte del clero "pasaba" de Santo Tomas!. El mismo me contó -hace años- que, cuando llegó a la cátedra de historia de la filosofía del derecho de la Universidad de Paris,casi todos sus alumnos eran marxistas; pero que, a la sazón, si bien la mitad seguían siéndolo, la otra mitad eran tomistas. Su valentía intelectual, al ir contra la corriente de la opinión que se exhibe y grita dogmáticamente desde los mass media, es muy meritoria, tanto o mucho más difícil, a veces, que el valor físico. El supo tenerla sin al baracas ni crispaciones; sino serenamente apoyándose en datos reales y en sólidos argumentos, merecedores, por lo menos, del mayor respeto

    Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres

    Full text link
    Long interspersed element-1 (LINE-1 or L1) elements are abundant, non-long-terminal-repeat (non-LTR) retrotransposons that comprise 17% of human DNA(1). The average human genome contains similar to 80-100 retrotransposition- competent L1s (ref. 2), and they mobilize by a process that uses both the L1 endonuclease and reverse transcriptase, termed target-site primed reverse transcription(3-5). We have previously reported an efficient, endonuclease-independent L1 retrotransposition pathway (ENi) in certain Chinese hamster ovary (CHO) cell lines that are defective in the non-homologous end-joining (NHEJ) pathway of DNA double-strand-break repair(6). Here we have characterized ENi retrotransposition events generated in V3 CHO cells, which are deficient in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and have both dysfunctional telomeres and an NHEJ defect. Notably, similar to 30% of ENi retrotransposition events insert in an orientation-specific manner adjacent to a perfect telomere repeat (5'-TTAGGG-3'). Similar insertions were not detected among ENi retrotransposition events generated in controls or in XR-1 CHO cells deficient for XRCC4, an NHEJ factor that is required for DNA ligation but has no known function in telomere maintenance. Furthermore, transient expression of a dominant-negative allele of human TRF2 ( also called TERF2) in XRCC4-deficient XR-1 cells, which disrupts telomere capping, enables telomere-associated ENi retrotransposition events. These data indicate that L1s containing a disabled endonuclease can use dysfunctional telomeres as an integration substrate. The findings highlight similarities between the mechanism of ENi retrotransposition and the action of telomerase, because both processes can use a 3' OH for priming reverse transcription at either internal DNA lesions or chromosome ends(7,8). Thus, we propose that ENi retrotransposition is an ancestral mechanism of RNA-mediated DNA repair associated with non-LTR retrotransposons that may have been used before the acquisition of an endonuclease domain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62964/1/nature05560.pd

    Citrullination regulates pluripotency and histone H1 binding to chromatin.

    Get PDF
    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.Cancer Research UKThis is the author accepted manuscript. The final version is available from the Nature Publishing Group via http://dx.doi.org/10.1038/nature1294

    Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT

    Get PDF
    Chromatin has a tendency to shift from a relatively decondensed (active) to condensed (inactive) state during cell differentiation due to interactions of specific architectural and/or regulatory proteins with DNA. A promotion of chromatin folding in terminally differentiated avian blood cells requires the presence of either histone H5 in erythrocytes or non-histone protein, myeloid and erythroid nuclear termination stage-specific protein (MENT), in white blood cells (lymphocytes and granulocytes). These highly abundant proteins assist in folding of nucleosome arrays and self-association of chromatin fibers into compacted chromatin structures. Here, we briefly review structural aspects and molecular mode of action by which these unrelated proteins can spread condensed chromatin to form inactivated regions in the genome

    Rad51 and DNA-PKcs are involved in the generation of specific telomere aberrations induced by the quadruplex ligand 360A that impair mitotic cell progression and lead to cell death

    Get PDF
    Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death
    corecore