51 research outputs found

    Ecological effects of experimental drought and prescribed fire in a southern California coastal grassland

    Full text link
    How drought and fire disturbance influence different levels of biological organization is poorly understood but essential for robust predictions of the effects of environmental change. During a year of severe drought, we conducted a prescribed fire in a Mediterranean-type coastal grassland near Irvine, California. In the weeks following the fire we experimentally manipulated rainfall in burned and unburned portions of the grassland to determine how fire and drought interact to influence leaf physiological performance, community composition, aboveground net primary productivity (ANPP) and component fluxes of ecosystem CO2 exchange and evapotranspiration (ET). Fire increased leaf photosynthesis (A net) and transpiration (T) of the native perennial bunchgrass, Nassella pulchra and the non-native annual grass, Bromus diandrus but did not influence ANPP or net ecosystem CO2 exchange (NEE). Surprisingly, drought only weakly influenced A net and T of both species but strongly influenced ANPP and NEE. We conclude that despite increasing experimental drought severity, prescribed fire influenced leaf CO2 and H2O exchange but had little effect on the component fluxes of ecosystem CO2 exchange. The differential effects of prescribed fire on leaf and ecosystem processes with increasingly severe drought highlight the challenge of predicting the responses of biological systems to disturbance and resource limitation

    Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil

    Full text link
    The technique of eddy correlation was used to measure the net ecosystem exchange over a woodland savanna (Cerrado Sensu stricto) site (Gleba PĂ© de Gigante) in southeast Brazil. The data set included measurements of climatological variables and soil respiration using static soil chambers. Data were collected during the period from 10 October 2000 to 30 March 2002. Measured soil respiration showed average values of 4.8 molCO2 m-2s-1 year round. Its seasonal differences varied from 2 to 8 molCO2 m-2s-1 (Q10 = 4.9) during the dry (April to August) and wet season, respectively, and was concurrent with soil temperature and moisture variability. The net ecosystem CO2 flux (NEE) variability is controlled by solar radiation, temperature and air humidity on diel course. Seasonally, soil moisture plays a strong role by inducing litterfall, reducing canopy photosynthetic activity and soil respiration. The net sign of NEE is negative (sink) in the wet season and early dry season, with rates around -25 kgC ha-1day-1, and values as low as 40 kgC ha-1day-1. NEE was positive (source) during most of the dry season, and changed into negative at the onset of rainy season. At critical times of soil moisture stress during the late dry season, the ecosystem experienced photosynthesis during daytime, although the net sign is positive (emission). Concurrent with dry season, the values appeared progressively positive from 5 to as much as 50 kgC ha-1day-1. The annual NEE sum appeared to be nearly in balance, or more exactly a small sink, equal to 0.1 0.3 tC ha-1yr-1, which we regard possibly as a realistic one, giving the constraining conditions imposed to the turbulent flux calculation, and favourable hypothesis of succession stages, climatic variability and CO2 fertilization
    • …
    corecore