506 research outputs found
Positive Multiplications in Difference Equations
AbstractWe study generalizations of three-term recurrence relations with respect to positivity and what amounts to a boundary for the corresponding Markov chains. We show that an eventual "linearization" property often holds. We also obtain limit ratio theorems for many of the random walks/Markov chains
Effect of Sun and Planet-Bound Dark Matter on Planet and Satellite Dynamics in the Solar System
We apply our recent results on orbital dynamics around a mass-varying central
body to the phenomenon of accretion of Dark Matter-assumed not
self-annihilating-on the Sun and the major bodies of the solar system due to
its motion throughout the Milky Way halo. We inspect its consequences on the
orbits of the planets and their satellites over timescales of the order of the
age of the solar system. It turns out that a solar Dark Matter accretion rate
of \approx 10^-12 yr^-1, inferred from the upper limit \Delta M/M= 0.02-0.05 on
the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr,
would have displaced the planets faraway by about 10^-2-10^1 au 4.5 Gyr ago.
Another consequence is that the semimajor axis of the Earth's orbit,
approximately equal to the Astronomical Unit, would undergo a secular increase
of 0.02-0.05 m yr^-1, in agreement with the latest observational determinations
of the Astronomical Unit secular increase of 0.07 +/- 0.02 m yr^-1 and 0.05 m
yr^-1. By assuming that the Sun will continue to accrete Dark Matter in the
next billions year at the same rate as in the past, the orbits of its planets
will shrink by about 10^-1-10^1 au (\approx 0.2-0.5 au for the Earth), with
consequences for their fate, especially of the inner planets. On the other
hand, lunar and planetary ephemerides set upper bounds on the secular variation
of the Sun's gravitational parameter GM which are one one order of magnitude
smaller than 10^-12 yr^-1. Dark Matter accretion on planets has, instead, less
relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits
would have been just 10^-2-10^1 km wider than now. (Abridged)Comment: LaTex2e, 17 pages, no figures, 7 tables, 61 references. Small problem
with a reference fixed. To appear in Journal of Cosmology and Astroparticle
Physics (JCAP
Coping with the effects of fear of failure in young elite athletes
Coping with stress is an important element in effective functioning at the elite level in sports, and fear of failure (FF) is an example of a stressor that athletes experience. Three issues underpin the present preliminary study. First, the prevalence of problems attributed to FF in achievement settings. Second, sport is a popular and significant achievement domain for children and adolescents. Third, there is a lack of research on FF in sport among this population. Therefore, the objectives of the study were to examine the effects of FF on young athletes and to find out their coping responses to the effects of FF. Interviews were conducted individually with nine young elite athÂletes (5 males, 4 females; ages 14-17 years). It was inferred from the data that FF affected the athletes' well-being, interpersonal behavior, sport performance, and schoolwork. The athletes employed a combination of problem-focused, emotion-foÂcused, and avoidance-focused coping strategies, with avoidance strategies being the most frequently reported
Atomic diffraction from nanostructured optical potentials
We develop a versatile theoretical approach to the study of cold-atom
diffractive scattering from light-field gratings by combining calculations of
the optical near-field, generated by evanescent waves close to the surface of
periodic nanostructured arrays, together with advanced atom wavepacket
propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.
Neutrino Interferometry In Curved Spacetime
Gravitational lensing introduces the possibility of multiple (macroscopic)
paths from an astrophysical neutrino source to a detector. Such a multiplicity
of paths can allow for quantum mechanical interference to take place that is
qualitatively different to neutrino oscillations in flat space. After an
illustrative example clarifying some under-appreciated subtleties of the phase
calculation, we derive the form of the quantum mechanical phase for a neutrino
mass eigenstate propagating non-radially through a Schwarzschild metric. We
subsequently determine the form of the interference pattern seen at a detector.
We show that the neutrino signal from a supernova could exhibit the
interference effects we discuss were it lensed by an object in a suitable mass
range. We finally conclude, however, that -- given current neutrino detector
technology -- the probability of such lensing occurring for a
(neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation
-- accepted for publication in Phys.Rev.D. Extra author adde
Experimental evidence for 56Ni-core breaking from the low-spin structure of the N=Z nucleus 58Cu
Low-spin states in the odd-odd N=Z nucleus 58Cu were investigated with the
58Ni(p,n gamma)58Cu fusion evaporation reaction at the FN-tandem accelerator in
Cologne. Seventeen low spin states below 3.6 MeV and 17 new transitions were
observed. Ten multipole mixing ratios and 17 gamma-branching ratios were
determined for the first time. New detailed spectroscopic information on the
2+,2 state, the Isobaric Analogue State (IAS) of the 2+,1,T=1 state of 58Ni,
makes 58Cu the heaviest odd-odd N=Z nucleus with known B(E2;2+,T=1 --> 0+,T=1)
value. The 4^+ state at 2.751 MeV, observed here for the first time, is
identified as the IAS of the 4+,1,T=1 state in 58Ni. The new data are compared
to full pf-shell model calculations with the novel GXPF1 residual interaction
and to calculations within a pf5/2 configurational space with a residual
surface delta interaction. The role of the 56Ni core excitations for the
low-spin structure in 58Cu is discussed.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
The T2K Side Muon Range Detector
The T2K experiment is a long baseline neutrino oscillation experiment aiming
to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam
is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed
with the 295 km distant Super- Kamiokande Detector and monitored by a suite of
near detectors at 280m from the proton target. The near detectors include a
magnetized off-axis detector (ND280) which measures the un-oscillated neutrino
flux and neutrino cross sections. The present paper describes the outermost
component of ND280 which is a side muon range detector (SMRD) composed of
scintillation counters with embedded wavelength shifting fibers and Multi-Pixel
Photon Counter read-out. The components, performance and response of the SMRD
are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Massive binary black holes in galactic nuclei and their path to coalescence
Massive binary black holes form at the centre of galaxies that experience a
merger episode. They are expected to coalesce into a larger black hole,
following the emission of gravitational waves. Coalescing massive binary black
holes are among the loudest sources of gravitational waves in the Universe, and
the detection of these events is at the frontier of contemporary astrophysics.
Understanding the black hole binary formation path and dynamics in galaxy
mergers is therefore mandatory. A key question poses: during a merger, will the
black holes descend over time on closer orbits, form a Keplerian binary and
coalesce shortly after? Here we review progress on the fate of black holes in
both major and minor mergers of galaxies, either gas-free or gas-rich, in
smooth and clumpy circum-nuclear discs after a galactic merger, and in
circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard
cover in the Space Sciences Series of ISSI "The Physics of Accretion onto
Black Holes" (Springer Publisher
- âŠ