1,688 research outputs found

    Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades

    Get PDF
    We present the first direct experimental evidence for the charge excess in high energy particle showers predicted nearly 40 years ago by Askaryan. We directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio frequency pulses produced whenever a shower was present. The measured electric field strengths are consistent with a completely coherent radiation process. The pulses show 100% linear polarization, consistent with the expectations of Cherenkov radiation. The field strength versus depth closely follows the expected particle number density profile of the cascade, consistent with emission from excess charge distributed along the shower. These measurements therefore provide strong support for experiments designed to detect high energy cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let

    Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux

    Full text link
    We report results from 120 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4; in final PRL revie

    Variability in the high energy gamma ray emission from Cyg X-3 over a two-year period (1983 - 1984) at E 4 x 10(11) eV

    Get PDF
    Cygnus X-3 is observed to emit gamma rays with energies in excess of 4 x 10 to the 11th power eV during two out of 9 observational categories over an 18 month time span. The emissions are observed at the 0.6 phase of the characteristic 4.8 hr light curve for this binary system. We estimate a peak flux at phase 0.6 of 5 x 10 to the minus 10th power photons cm-2s-1 at a software threshold of 8 x 10 to the 11th power eV for Oct/Nov 1983. A flux for the June 84 effect cannot be reliably calculated at present due to lack of Monte Carlo simulations for the energy range and spectral region. For the other 7 observational categories the observations are consistent with zero source emission. The light curve would appear to be variable on a time scale of a couple of weeks at these categories. Selection of compact images in accordance with Monte Carlo simulations combined with empirical optimization techniques have led to an enriched gamma ray light curve for the Oct/Nov 1983 data. Selection on the basis of shower orientation, however, has not led to any notable enhancement of the gamma ray content. Individual Cherenko images can be reliably sorted on an event by event basis into either proton-induced or photon-induced showers

    LUNASKA experiments using the Australia Telescope Compact Array to search for ultra-high energy neutrinos and develop technology for the lunar Cherenkov technique

    Full text link
    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our "Lunar UHE Neutrino Astrophysics using the Square Kilometer Array" (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultra-high energy (UHE) cosmic ray (CR) and neutrino detection, and in particular to prepare for using the Square Kilometer Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.Comment: 27 pages, 18 figures, 4 tables

    Time-Domain Measurement of Broadband Coherent Cherenkov Radiation

    Full text link
    We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole array antenna is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; 0.039 microV/MHz/TeV and 17 deg, respectively. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E > 10^15 eV.Comment: 10 pages, 9 figures, accepted by Phys. Rev.

    Markarian 421's Unusual Satellite Galaxy

    Get PDF
    We present Hubble Space Telescope (HST) imagery and photometry of the active galaxy Markarian 421 and its companion galaxy 14 arcsec to the ENE. The HST images indicate that the companion is a morphological spiral rather than elliptical as previous ground--based imaging has concluded. The companion has a bright, compact nucleus, appearing unresolved in the HST images. This is suggestive of Seyfert activity, or possibly a highly luminous compact star cluster. We also report the results of high dynamic range long-slit spectroscopy with the slit placed to extend across both galaxies and nuclei. We detect no emission lines in the companion nucleus, though there is evidence for recent star formation. Velocities derived from a number of absorption lines visible in both galaxies indicate that the two systems are probably tidally bound and thus in close physical proximity. Using the measured relative velocities, we derive a lower limit on the MKN 421 mass within the companion orbit (R \sim 10 kpc) of 5.9 \times 10^{11} solar masses, and a mass-to-light ratio of >= 17. Our spectroscopy also shows for the first time the presence of H\alpha and [NII] emission lines from the nucleus of MKN 421, providing another example of the appearance of new emission features in the previously featureless spectrum of a classical BL Lac object. We see both broad and narrow line emission, with a velocity dispersion of several thousand km s^{-1} evident in the broad lines.Comment: LaTeX (aaspp4 style), 28 pages, 8 figures, to appear in AJ. Revised text from ref. comments; new & modified figures; new photometry included; minor corrections of typos. Color version of Fig. 1 to appear in Feb. 2000 Sky & Telescop

    Search for gamma-rays from M31 and other extragalactic objects

    Get PDF
    Although the existence of fluxes of gamma-rays of energies 10 to the 12th power eV is now established for galactic sources, the detection of such gamma-rays from extragalactic sources has yet to be independently confirmed in any case. The detection and confirmation of such energetic photons is of great astrophysical importance in the study of production mechanisms for cosmic rays, and other high energy processes in extragalactic objects. Observations of m31 are discussed. It is reported as a 10 to the 12th power eV gamma-ray source. Flux limits on a number of other extragalactic objects chosen for study are given

    Optimal Radio Window for the Detection of Ultra-High-Energy Cosmic Rays and Neutrinos off the Moon

    Get PDF
    When high-energy cosmic rays impinge on a dense dielectric medium, radio waves are produced through the Askaryan effect. We show that at wavelengths comparable to the length of the shower produced by an Ultra-High Energy cosmic ray or neutrino, radio signals are an extremely efficient way to detect these particles. Through an example it is shown that this new approach offers, for the first time, the realistic possibility of measuring UHE neutrino fluxes below the Waxman-Bahcall limit. It is shown that in only one month of observing with the upcoming LOFAR radio telescope, cosmic-ray events can be measured beyond the GZK-limit, at a sensitivity level of two orders of magnitude below the extrapolated values.Comment: Submitted to Astroparticle Physic

    Limit on UHE Neutrino Flux from the Parkes Lunar Radio Cherenkov Experiment

    Get PDF
    The first search for ultra-high energy (UHE) neutrinos using a radio telescope was conducted by Hankins, Ekers and O'Sullivan (1996). This was a search for nanosecond duration radio Cherenkov pulses from electromagnetic cascades initiated by ultra-high energy (UHE) neutrino interactions in the lunar regolith, and was made using a broad-bandwidth receiver fitted to the Parkes radio telescope, Australia. At the time, no simulations were available to convert the null result into a neutrino flux limit. Since then, similar experiments at Goldstone, USA, and Kalyazin, Russia, have also recorded null results, and computer simulations have been used to model the experimental sensitivities of these two experiments and put useful limits on the UHE neutrino flux. Proposed future experiments include the use of broad-bandwidth receivers, making the sensitivity achieved by the Parkes experiment highly relevant to the future prospects of this field. We have therefore calculated the effective aperture for the Parkes experiment and found that when pointing at the lunar limb, the effective aperture at all neutrino energies was superior to single-antenna, narrow-bandwidth experiments, and that the detection threshold was comparable to that of the double-antenna experiment at Goldstone. However, because only a small fraction of the observing time was spent pointing the limb, the Parkes experiment places only comparatively weak limits on the UHE neutrino flux. Future efforts should use multiple telescopes and broad-bandwidth receivers.Comment: 6 pages, 2 figures, accepted for publication in MNRA
    corecore