370 research outputs found

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes

    Get PDF
    The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years[superscript 1, 2, 3]. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay[superscript 4, 5]. This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over[superscript 2, 6]. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome[superscript 7, 8, 9, 10], remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection

    Real-time PCR-based assay to quantify the relative amount of human and mouse tissue present in tumor xenografts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenograft samples used to test anti-cancer drug efficacies and toxicities in vivo contain an unknown mix of mouse and human cells. Evaluation of drug activity can be confounded by samples containing large amounts of contaminating mouse tissue. We have developed a real-time quantitative polymerase chain reaction (qPCR) assay using TaqMan technology to quantify the amount of mouse tissue that is incorporated into human xenograft samples.</p> <p>Results</p> <p>The forward and reverse primers bind to the same DNA sequence in the human and the mouse genome. Using a set of specially designed fluorescent probes provides species specificity. The linearity and sensitivity of the assay is evaluated using serial dilutions of single species and heterogeneous DNA mixtures. We examined many xenograft samples at various in vivo passages, finding a wide variety of human:mouse DNA ratios. This variation may be influenced by tumor type, number of serial passages in vivo, and even which part of the tumor was collected and used in the assay.</p> <p>Conclusions</p> <p>This novel assay provides an accurate quantitative assessment of human and mouse content in xenograft tumors. This assay can be performed on aberrantly behaving human xenografts, samples used in bioinformatics studies, and periodically for tumor tissue frequently grown by serial passage in vivo.</p

    Familial adenomatous polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is characterized by the development of many tens to thousands of adenomas in the rectum and colon during the second decade of life. FAP has an incidence at birth of about 1/8,300, it manifests equally in both sexes, and accounts for less than 1% of colorectal cancer (CRC) cases. In the European Union, prevalence has been estimated at 1/11,300-37,600. Most patients are asymptomatic for years until the adenomas are large and numerous, and cause rectal bleeding or even anemia, or cancer develops. Generally, cancers start to develop a decade after the appearance of the polyps. Nonspecific symptoms may include constipation or diarrhea, abdominal pain, palpable abdominal masses and weight loss. FAP may present with some extraintestinal manifestations such as osteomas, dental abnormalities (unerupted teeth, congenital absence of one or more teeth, supernumerary teeth, dentigerous cysts and odontomas), congenital hypertrophy of the retinal pigment epithelium (CHRPE), desmoid tumors, and extracolonic cancers (thyroid, liver, bile ducts and central nervous system). A less aggressive variant of FAP, attenuated FAP (AFAP), is characterized by fewer colorectal adenomatous polyps (usually 10 to 100), later age of adenoma appearance and a lower cancer risk. Some lesions (skull and mandible osteomas, dental abnormalities, and fibromas on the scalp, shoulders, arms and back) are indicative of the Gardner variant of FAP. Classic FAP is inherited in an autosomal dominant manner and results from a germline mutation in the adenomatous polyposis (APC) gene. Most patients (~70%) have a family history of colorectal polyps and cancer. In a subset of individuals, a MUTYH mutation causes a recessively inherited polyposis condition, MUTYH-associated polyposis (MAP), which is characterized by a slightly increased risk of developing CRC and polyps/adenomas in both the upper and lower gastrointestinal tract. Diagnosis is based on a suggestive family history, clinical findings, and large bowel endoscopy or full colonoscopy. Whenever possible, the clinical diagnosis should be confirmed by genetic testing. When the APC mutation in the family has been identified, genetic testing of all first-degree relatives should be performed. Presymptomatic and prenatal (amniocentesis and chorionic villous sampling), and even preimplantation genetic testing is possible. Referral to a geneticist or genetic counselor is mandatory. Differential diagnoses include other disorders causing multiple polyps (such as Peutz-Jeghers syndrome, familial juvenile polyps or hyperplastic polyposis, hereditary mixed polyposis syndromes, and Lynch syndrome). Cancer prevention and maintaining a good quality of life are the main goals of management and regular and systematic follow-up and supportive care should be offered to all patients. By the late teens or early twenties, colorectal cancer prophylactic surgery is advocated. The recommended alternatives are total proctocolectomy and ileoanal pouch or ileorectal anastomosis for AFAP. Duodenal cancer and desmoids are the two main causes of mortality after total colectomy, they need to be identified early and treated. Upper endoscopy is necessary for surveillance to reduce the risk of ampullary and duodenal cancer. Patients with progressive tumors and unresectable disease may respond or stabilize with a combination of cytotoxic chemotherapy and surgery (when possible to perform). Adjunctive therapy with celecoxib has been approved by the US Food and Drug Administration and the European Medicines Agency in patients with FAP. Individuals with FAP carry a 100% risk of CRC; however, this risk is reduced significantly when patients enter a screening-treatment program

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Molecular cloning and characterization of the porcine prostaglandin transporter (SLCO2A1): evaluation of its role in F4 mediated neonatal diarrhoea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because prostaglandins are involved in many (patho)physiological processes, <it>SLCO2A1 </it>was already characterized in several species in an attempt to unravel specific processes/deficiencies. Here, we describe the molecular cloning and characterization of the porcine ortholog in order to evaluate its possible involvement in F4 enterotoxigenic <it>E. coli </it>mediated neonatal diarrhoea, based on a positional candidate gene approach study.</p> <p>Results</p> <p>Porcine <it>SLCO2A1 </it>is organized in 14 exons, containing an open reading frame of 1935 bp, encoding a 12-transmembrane organic anion cell surface transporter of 644 aa. The -388 to -5 upstream region comprises a (CpG)<sub>48 </sub>island containing a number of conserved promoter elements, including a TATA box. A potential alternative promoter region was found in the conserved -973 to -700 upstream region. No consensus polyadenylation signal was discovered in the 3' UTR. Repeat sequences were found in 15% of all the non coding sequences.</p> <p>As expected for a multifunctional protein, a wide tissue distribution was observed. mRNA expression was found in the adrenal gland, bladder, caecum, colon (centripetal coil/centrifugal coil), diaphragm, duodenum, gallbladder, heart, ileum, jejunum, kidney, liver, longissimus dorsi muscle, lung, lymph node, mesenterium, rectum, spleen, stomach, tongue and ureter, but not in the aorta, oesophagus and pancreas.</p> <p>The promoter region and the exons (including the splice sites) of <it>SLCO2A1 </it>were resequenced in 5 F4ab/ac receptor positive and 5 F4ab/ac receptor negative pigs. Two silent and 2 missense (both S → L at position 360 and 633) mutations were found, but none was associated with the F4ab/ac receptor phenotype. In addition, no phenotype associated differential mRNA expression or alternative/abberant splicing/polyadenylation was found in the jejunum.</p> <p>Conclusion</p> <p>The molecular cloning and characterization of porcine <it>SLCO2A1 </it>not only contributes to the already existing knowledge about the transporter in general, but enables studies on porcine prostaglandin related processes/deficiencies as patient and/or model. Here we examined its possible involvement as receptor in F4 enterotoxigenic <it>E. coli </it>mediated neonatal diarrhoea. Because no phenotype associated differences could be found in the gene sequence nor in its jejunal transcription profile of F4ab/ac receptor positive/negative pigs, SLCO2A1 can most likely be excluded as receptor for F4 bacteria.</p

    Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity

    Get PDF
    Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays

    A first generation BAC-based physical map of the rainbow trout genome

    Get PDF
    Background: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species.[br/] Results: The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map.[br/] Conclusion: The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs
    corecore