132 research outputs found
Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO2
Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well-known to be systematically correlated with the hydration free energy of the interlayer cation, particularly in environments dominated by nonpolar solvents (i.e., CO2), uptake into the interlayer is not well-understood. Using novel high-pressure capabilities, we investigated the interaction of dry supercritical CO2 with Na-, NH4-, and Cs-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend in H2O and that cation solvation energies in CO2 suggest a stronger interaction with Na, both the NH4- and Cs-clays readily absorbed CO2 and expanded, while the Na-clay did not. The apparent inertness of the Na-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na-clay but little or no energy barrier for the NH4- and Cs-clays. Indeed, the combination of experiment and theory clearly demonstrate that CO2 intercalation of Na-montmorillonite clays is prohibited in the absence of H2O. Consequently, we have shown for the first time that in the presence of a low dielectric constant, gas swelling depends more on the strength of the interaction between the interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicate swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage, and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semipermeable reactive barriers
From sea monsters to charismatic megafauna: changes in perception and use of large marine animals
Marine megafauna has always elicited contrasting feelings. In the past, large marine animals were often depicted as fantastic mythological creatures and dangerous monsters, while also arousing human curiosity. Marine megafauna has been a valuable resource to exploit, leading to the collapse of populations and local extinctions. In addition, some species have been perceived as competitors of fishers for marine resources and were often actively culled. Since the 1970s, there has been a change in the perception and use of megafauna. The growth of marine tourism, increasingly oriented towards the observation of wildlife, has driven a shift from extractive to non-extractive use, supporting the conservation of at least some species of marine megafauna. In this paper, we review and compare the changes in the perception and use of three megafaunal groups, cetaceans, elasmobranchs and groupers, with a special focus on European cultures. We highlight the main drivers and the timing of these changes, compare different taxonomic groups and species, and highlight the implications for management and conservation. One of the main drivers of the shift in perception, shared by all the three groups of megafauna, has been a general increase in curiosity towards wildlife, stimulated inter alia by documentaries (from the early 1970s onwards), and also promoted by easy access to scuba diving. At the same time, environmental campaigns have been developed to raise public awareness regarding marine wildlife, especially cetaceans, a process greatly facilitated by the rise of Internet and the World Wide Web. Currently, all the three groups (cetaceans, elasmobranchs and groupers) may represent valuable resources for ecotourism. Strikingly, the economic value of live specimens may exceed their value for human consumption. A further change in perception involving all the three groups is related to a growing understanding and appreciation of their key ecological role. The shift from extractive to non-extractive use has the potential for promoting species conservation and local economic growth. However, the change in use may not benefit the original stakeholders (e.g. fishers or whalers) and there may therefore be a case for providing compensation for disadvantaged stakeholders. Moreover, it is increasingly clear that even non-extractive use may have a negative impact on marine megafauna, therefore regulations are needed.SFRH/BPD/102494/2014, UID/MAR/04292/2019, IS1403info:eu-repo/semantics/publishedVersio
Movement consistency during repetitive tool use action
The consistency and repeatability of movement patterns has been of long-standing interest in locomotor biomechanics, but less well explored in other domains. Tool use is one of such a domain; while the complex dynamics of the human-tool-environment system have been approached from various angles, to date it remains unknown how the rhythmicity of repetitive tool-using action emerges. To examine whether the spontaneously adopted movement frequency is a variable susceptible to individual execution approaches or emerges as constant behaviour, we recorded sawing motion across a range of 14 experimental conditions using various manipulations. This was compared to free and pantomimed arm movements. We found that a mean (SD) sawing frequency of 2.0 (0.4) Hz was employed across experimental conditions. Most experimental conditions did not significantly affect the sawing frequency, signifying the robustness of this spontaneously emerging movement. Free horizontal arm translation and miming of sawing was performed at half the movement frequency with more than double the excursion distance, showing that not all arm movements spontaneously emerge at the observed sawing parameters. Observed movement frequencies across all conditions could be closely predicted from movement time reference data for generic arm movements found in the Methods Time Measurement literature, highlighting a generic biomechanical relationship between the time taken for a given distance travelled underlying the observed behaviour. We conclude that our findings lend support to the hypothesis that repetitive movements during tool use are executed according to generic and predictable musculoskeletal mechanics and constraints, albeit in the context of the general task (sawing) and environmental constraints such as friction, rather than being subject to task-specific control or individual cognitive schemata
Viability selection creates negative heterozygosityâfitness correlations in female Black Grouse Lyrurus tetrix
There is widespread interest in the relationship between individual genetic diversity and fitnessârelated traits (heterozygosityâfitness correlations, HFC). Most studies found weak continuous increases of fitness with increasing heterozygosity while negative HFC have rarely been reported. Negative HFC are expected in cases of outbreeding depression and outbreeding is rare in natural populations; but negative HFC may also arise through viability selection acting on low heterozygosity individuals at an early stage producing a skew in the heterozygosity distribution leading to negative HFCs. We tested this idea using survival and clutch parameters (egg mass, egg volume, chick mass, clutch size) collected in female black grouse Lyrurus tetrix and carried out simulations to determine how survival selection may impact the HFCs measured using clutch parameters. We show that survival is positively related to both individual heterozygosity and female body mass. There is a positive effect of body mass on all clutch parameters, but the selective mortality of females with both low heterozygosity and low body mass led to over representation of high heterozygosity-low body mass females and hence a negative relationship between egg volume and heterozygosity. Using simulated data, we show that survival selection acting on both low body mass and low heterozygosity leads to a skew in the quality of females breeding, resulting in negative HFCs with egg volume. Our results indicate that survival selection can strongly influence the strength and direction of any HFC that occur later in life and that only an integration of all aspects of individualsâ reproductive investment and reproductive success can enable us to fully understand how heterozygosity can shape individualâs fitness
Viability selection creates negative heterozygosityâfitness correlations in female Black Grouse Lyrurus tetrix
There is widespread interest in the relationship between individual genetic diversity and fitnessârelated traits (heterozygosityâfitness correlations, HFC). Most studies found weak continuous increases of fitness with increasing heterozygosity while negative HFC have rarely been reported. Negative HFC are expected in cases of outbreeding depression and outbreeding is rare in natural populations; but negative HFC may also arise through viability selection acting on low heterozygosity individuals at an early stage producing a skew in the heterozygosity distribution leading to negative HFCs. We tested this idea using survival and clutch parameters (egg mass, egg volume, chick mass, clutch size) collected in female black grouse Lyrurus tetrix and carried out simulations to determine how survival selection may impact the HFCs measured using clutch parameters. We show that survival is positively related to both individual heterozygosity and female body mass. There is a positive effect of body mass on all clutch parameters, but the selective mortality of females with both low heterozygosity and low body mass led to over representation of high heterozygosity-low body mass females and hence a negative relationship between egg volume and heterozygosity. Using simulated data, we show that survival selection acting on both low body mass and low heterozygosity leads to a skew in the quality of females breeding, resulting in negative HFCs with egg volume. Our results indicate that survival selection can strongly influence the strength and direction of any HFC that occur later in life and that only an integration of all aspects of individualsâ reproductive investment and reproductive success can enable us to fully understand how heterozygosity can shape individualâs fitness
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
- âŠ