102 research outputs found

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin

    Get PDF
    In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as ‘strong’ (e.g. thrombin and collagen) or ‘mild’ (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since ‘strong’ stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to ‘mild’ stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD

    TRPM2-mediated rise in mitochondrial Zn2+ promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents

    No full text
    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca2+ and Zn2+, chelation of Zn2+ alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn2+, palmitate caused a rise in mitochondrial Zn2+, leading to Zn2+-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca2+ caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn2+. These results indicate a novel role for Zn2+ in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn2+, Drp-1 recruitment and abnormal mitochondrial fission

    Regulation of mitochondrial morphogenesis by annexin a6.

    Get PDF
    Mitochondrial homeostasis is critical in meeting cellular energy demands, shaping calcium signals and determining susceptibility to apoptosis. Here we report a role for anxA6 in the regulation of mitochondrial morphogenesis, and show that in cells lacking anxA6 mitochondria are fragmented, respiration is impaired and mitochondrial membrane potential is reduced. In fibroblasts from AnxA6(-/-) mice, mitochondrial Ca(2+) uptake is reduced and cytosolic Ca(2+) transients are elevated. These observations led us to investigate possible interactions between anxA6 and proteins with roles in mitochondrial fusion and fission. We found that anxA6 associates with Drp1 and that mitochondrial fragmentation in AnxA6(-/-) fibroblasts was prevented by the Drp1 inhibitor mdivi-1. In normal cells elevation of intracellular Ca(2+) disrupted the interaction between anxA6 and Drp1, displacing anxA6 to the plasma membrane and promoting mitochondrial fission. Our results suggest that anxA6 inhibits Drp1 activity, and that Ca(2+)-binding to anxA6 relieves this inhibition to permit Drp1-mediated mitochondrial fission

    Exogenous Ether Lipids Predominantly Target Mitochondria

    Get PDF
    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking

    Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons

    Get PDF
    Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration

    Mitochondrial Alterations in PINK1 Deficient Cells Are Influenced by Calcineurin-Dependent Dephosphorylation of Dynamin-Related Protein 1

    Get PDF
    PTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1) exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity
    corecore