324 research outputs found

    The effects of large-sided soccer training games and pitch size manipulation on time–motion profile, spatial exploration and surface area: Tactical opportunities

    Get PDF
    Analysis of the physical, technical and physiological variations induced through the use of different soccer game formats have been widely discussed. However, the coaching justification for the specific use of certain game formats based on individual and collective spatial awareness is unclear. As a result, the purpose of this study was to analyze 11 versus 11 game formats conducted across two pitch sizes (half-size: 54 m × 68 m vs full-size: 108 m × 68 m) to identify effects of time–motion profiles, individual exploration behavior and collective organization. A total of 10 amateur soccer players from the same team (23.39 ± 3.91 years old) participated in this study. Data position of the players was used to calculate the spatial exploration index and the surface area. Distances covered in different speeds were used to observe the time–motion profile. The full-size pitch dimensions significantly contributed to greater distances covered via running (3.86–5.52 m s−1) and sprinting (>5.52 m s−1). Total distance and number of sprints were also significantly greater in the full-size pitch as compared to the half-size pitch. The surface area covered by the team (half-size pitch: 431.83 m2 vs full-size pitch: 589.14 m2) was significantly larger in the full-size pitch condition. However, the reduced half-size pitch significantly contributed to a greater individual spatial exploration. Results of this study suggest that running and sprinting activities increase when large, full-size pitch dimensions are utilized. Smaller surface area half-size pitch contributes to a better exploration of the pitch measured by spatial exploration index while maintaining adequate surface area coverage by the team. In conclusion, the authors suggest that the small half-size pitch is more appropriate for low-intensity training sessions and field exploration for players in different positions. Alternatively, the large full-size pitch is more appropriate for greater physically demanding training sessions with players focused on positional tactical behavior.info:eu-repo/semantics/publishedVersio

    Routinely measured haematological markers can help to predict AIS scores following spinal cord injury.

    Get PDF
    Neurological outcomes following spinal cord injury (SCI) are currently difficult to predict. Whilst the initial American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade can give an estimate of outcome, the high remaining degree of uncertainty has stoked recent interest in biomarkers for SCI. This study aimed to assess the prognostic value of routinely measured blood biomarkers by developing prognostic models of AIS scores at discharge and 12-months post-injury. Routine blood and clinical data were collected from SCI patients (n=427) and blood measures that had been assessed in less than 50% of patients were excluded. Outcome neurology was obtained from AIS and Spinal cord independence measure III (SCIM-III) scores at discharge and 12-months post-injury, with motor (AIS) and sensory (AIS, touch and prick) abilities being assessed individually. Linear regression models with and without elastic net penalisation were created for all outcome measures. Blood measures associated with liver function such as alanine transaminase were found to add value to predictions of SCIM-III at discharge and 12-months post-injury. Furthermore, components of a total blood count including haemoglobin were found to add value to predictions of AIS motor and sensory scores at discharge and 12-month post-injury. These findings corroborate the results of our previous preliminary study and thus provide further evidence that routine blood measures can add prognostic value in SCI, and that markers of liver function are of particular interest

    Estrogen receptor degradation: a CUE for endocrine resistance?

    Get PDF
    Despite the undoubted success of adjuvant endocrine therapies that target the estrogen receptor pathway, not all women with estrogen receptor-positive breast cancer respond to these therapies, and many who initially respond will subsequently relapse. Deregulation of various aspects of estrogen receptor signaling has been highlighted as a mechanism of resistance and as a basis for alternative therapeutic approaches. However, a recent publication refocuses attention on the estrogen receptor itself by showing that the ubiquitin-binding CUE domain-containing protein 2 is a regulator of estrogen receptor protein degradation and a marker of endocrine resistance in breast cancer

    Isolation and characterization of resident endogenous c-Kit⁺ cardiac stem cells from the adult mouse and rat heart

    Get PDF
    This protocol describes the isolation of endogenous c-Kit (also known as CD117)-positive (c-Kit⁺), CD45-negative (CD45⁻) cardiac stem cells (eCSCs) from whole adult mouse and rat hearts. The heart is enzymatically digested via retrograde perfusion of the coronary circulation, resulting in rapid and extensive breakdown of the whole heart. Next, the tissue is mechanically dissociated further and cell fractions are separated by centrifugation. The c-Kit⁺ CD45⁻ eCSC population is isolated by magnetic-activated cell sorting technology and purity and cell numbers are assessed by flow cytometry. This process takes ∼4 h for mouse eCSCs or 4.5 h for rat eCSCs. We also describe how to characterize c-Kit⁺ CD45⁻ eCSCs. The c-Kit⁺ CD45⁻eCSCs exhibit the defining characteristics of stem cells: they are self-renewing, clonogenic and multipotent. This protocol also describes how to differentiate eCSCs into three main cardiac lineages: functional, beating cardiomyocytes, smooth muscle, and endothelial cells. These processes take 17-20 d

    Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering

    Get PDF
    Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized.Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy.Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure

    FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer

    Get PDF
    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.Oncogene advance online publication, 22 December 2014; doi:10.1038/onc.2014.421.published_or_final_versio

    Does maternal exposure to an environmental stressor affect offspring response to predators?

    Get PDF
    There is growing recognition of the ways in which maternal effects can influence offspring size, physiological performance, and survival. Additionally, environmental contaminants increasingly act as stressors in maternal environments, possibly leading to maternal effects on subsequent offspring. Thus, it is important to determine whether contaminants and other stressors can contribute to maternal effects, particularly under varied ecological conditions that encompass the range under which offspring develop. We used aquatic mesocosms to determine whether maternal effects of mercury (Hg) exposure shape offspring phenotype in the American toad (Bufo americanus) in the presence or absence of larval predators (dragonfly naiads). We found significant maternal effects of Hg exposure and significant effects of predators on several offspring traits, but there was little evidence that maternal effects altered offspring interactions with predators. Offspring from Hg-exposed mothers were 18% smaller than those of reference mothers. Offspring reared with predators were 23% smaller at metamorphosis than those reared without predators. There was also evidence of reduced larval survival when larvae were reared with predators, but this was independent of maternal effects. Additionally, 5 times more larvae had spinal malformations when reared without predators, suggesting selective predation of malformed larvae by predators. Lastly, we found a significant negative correlation between offspring survival and algal density in mesocosms, indicating a role for top-down effects of predators on periphyton communities. Our results demonstrate that maternal exposure to an environmental stressor can induce phenotypic responses in offspring in a direction similar to that produced by direct exposure of offspring to predators

    Spectroscopic evidence of odd frequency superconducting order

    Get PDF
    Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced zero bias conductance peak at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance anomaly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.Comment: 5 pages, 3 figures + supplementary informatio

    Conceptions of learning factors in postgraduate health sciences master students: a comparative study with nonhealth science students and between genders

    Get PDF
    Background: The students’ conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. Methods: A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students’ conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. Results: The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. Conclusions: Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.Supported by CTS-115 (Tissue Engineering Group of the University of Granada). The funding body did not took part in the design of the study and collection, analysis and interpretation of data and in writing the manuscript
    corecore