66 research outputs found

    Chirality, magnetism and light

    Get PDF
    No abstract available

    Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors

    Get PDF
    The single crystal X-ray structure of the all-axial conformer of the (R,R,R,R) enantiomer of the chiral donor tetramethyl-BEDT-TTF (TM-BEDT-TTF) was described and compared to the all-equatorial conformer. (S,S,S,S)-Tetramethyl-BEDT-TTF formed crystalline 1 : 1 complexes with TCNQ and TCNQ-F4, as well as a THF solvate of the TCNQ complex. Donors bis((2S,4S)-pentane-2,4-dithio)tetrathiafulvalene and (ethylenedithio)((2S,4S)-pentane-2,4-dithio)tetrathiafulvalene, which contain seven-membered rings bearing chirally oriented methyl groups, only formed complexes with TCNQ-F4. The TCNQ-F4 complexes contain planar organosulfur systems, in contrast to the TCNQ complexes in which there is minimal charge transfer. A variety of crystal packing modes were observed. Electrocrystallization experiments with both enantiomers and the racemic form of tetramethyl-BEDT-TTF afforded mixed valence radical cation salts with the AsF6 and SbF6 anions formulated as (TM-BEDT-TTF)2XF6 (X = As, Sb). Electrical conductivity was only found in one charge transfer complex, while the radical cation salts are all semiconducting

    Chirality of Matter Shows Up via Spin Excitations

    Full text link
    Right- and left-handed circularly polarized light interact differently with electronic charges in chiral materials. This asymmetry generates the natural circular dichroism and gyrotropy, also known as the optical activity. Here we demonstrate that optical activity is not a privilege of the electronic charge excitations but it can also emerge for the spin excitations in magnetic matter. The square-lattice antiferromagnet Ba2_2CoGe2_2O7_7 offers an ideal arena to test this idea, since it can be transformed to a chiral form by application of external magnetic fields. As a direct proof of the field-induced chiral state, we observed large optical activity when the light is in resonance with spin excitations at sub-terahertz frequencies. In addition, we found that the magnetochiral effect, the absorption difference for the light beams propagating parallel and anti-parallel to the applied magnetic field, has an exceptionally large amplitude close to 100%. All these features are ascribed to the magnetoelectric nature of spin excitations as they interact both with the electric and magnetic components of light

    Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces

    Get PDF
    A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken. This potential rectification effect was shown to be very weak due to the fact that the kinetic energy is much higher than the energies associated with symmetry breaking, producing weak perturbations. Here we demonstrate the appearance of giant nonreciprocal charge transport in the conductive oxide interface, LaAlO3/SrTiO3, where the electrons are confined to two-dimensions with low Fermi energy. In addition, the Rashba spin???orbit interaction correlated with the sub-band hierarchy of this system enables a strongly tunable nonreciprocal response by applying a gate voltage. The observed behavior of directional response in LaAlO3/SrTiO3 is associated with comparable energy scales among kinetic energy, spin???orbit interaction, and magnetic field, which inspires a promising route to enhance nonreciprocal response and its functionalities in spin orbitronics

    Second-harmonic generation in centrosymmetric crystals of chiral molecules

    Get PDF
    For centrosym. structures of chiral mols., the interaction with circularly polarized light gives nonzero 2nd-order susceptibilities. It is ascribed to transitions that are both magnetic and elec. dipole allowed. Exptl. demonstration is given of 2nd-harmonic generation from centrosym. crystals of R,S-N-acetylvaline (P21/c) using a fundamental wave having elliptic polarization in most parts of the trajectory through the crystal. These results demonstrate the existence of optical activity in the hyperpolarizability term b, similarly to the well-known optical-rotation phenomena in the linear polarizability. [on SciFinder (R)

    SATURATION OF THE HYPERPOLARIZABILITY OF OLIGOTHIOPHENES

    Get PDF
    The observation is reported of satn. with chain length of the 2nd hyperpolarizability of a series of long defined conjugated oligothiophenes. This satn. occurs at the same length as that of the band gap and of the polarizability, and is attributed to a satn. of the effective conjugation length. Solvatochromic and thermochromic measurements indicate that conformational effects play a role. [on SciFinder (R)

    Temperature and magnetic field dependent photoluminescence from carbon nanotubes

    No full text
    Photoluminescence as a function of temperature and magnetic field from single walled carbon nanotube solutions is described. This is modelled assuming that it is dominated by the small energy splitting between the dark and bright states of the singlet excitons which are found to be in the region of 1-5 meV for nanotubes of 0.8-1.2nm. The emission energies show a large red-shift due to the introduction of an Aharanov-Bohm phase by magnetic field along the tube axis and the luminescence intensity is strongly enhanced at low temperatures due to the mixing of the different valley states of the excitons. © World Scientific Publishing Company
    corecore