161 research outputs found

    Preparation and Characterization of the Extracellular Domain of Human Sid-1

    Get PDF
    In C. elegans, the cell surface protein Sid-1 imports extracellular dsRNA into the cytosol of most non-neuronal cells, enabling systemic spread of RNA interference (RNAi) throughout the worm. Sid-1 homologs are found in many other animals, although for most a function for the protein has not yet been established. Sid-1 proteins are composed of an N-terminal extracellular domain (ECD) followed by 9–12 predicted transmembrane regions. We developed a baculovirus system to express and purify the ECD of the human Sid-1 protein SidT1. Recombinant SidT1 ECD is glycosylated and spontaneously assembles into a stable and discrete tetrameric structure. Electron microscopy (EM) and small angle x-ray scattering (SAXS) studies reveal that the SidT1 ECD tetramer is a compact, puck-shaped globular particle, which we hypothesize may control access of dsRNA to the transmembrane pore. These characterizations provide inroads towards understanding the mechanism of this unique RNA transport system from structural prospective

    Comparison of In vitro Nanoparticles Uptake in Various Cell Lines and In vivo Pulmonary Cellular Transport in Intratracheally Dosed Rat Model

    Get PDF
    In present study, the potential drug delivery of nanoformulations was validated via the comparison of cellular uptake of nanoparticles in various cell lines and in vivo pulmonary cellular uptake in intratracheally (IT) dosed rat model. Nanoparticles were prepared by a bench scale wet milling device and incubated with a series of cell lines, including Caco-2, RAW, MDCK and MDCK transfected MDR1 cells. IT dosed rats were examined for the pulmonary cellular uptake of nanoparticles. The processes of nanoparticle preparation did not alter the crystalline state of the material. The uptake of nanoparticles was observed most extensively in RAW cells and the least in Caco-2 cells. Efflux transporter P-gp did not prevent cell from nanoparticles uptake. The cellular uptake of nanoparticles was also confirmed in bronchoalveolar lavage (BAL) fluid cells and in bronchiolar epithelial cells, type II alveolar epithelial cells in the intratracheally administrated rats. The nanoparticles uptake in MDCK, RAW cells and in vivo lung epithelial cells indicated the potential applications of nanoformulation for poorly soluble compounds. The observed limited direct uptake of nanoparticles in Caco-2 cells suggests that the improvement in oral bioavailability by particle size reduction is via increased dissolution rate rather than direct uptake

    Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    Get PDF
    Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology (KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01

    Uracil DNA N-Glycosylase Promotes Assembly of Human Centromere Protein A

    Get PDF
    Uracil is removed from DNA by the conserved enzyme Uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
    corecore