268 research outputs found
The discovery, monitoring and environment of SGR J1935+2154
We report on the discovery of a new member of the magnetar class, SGR
J1935+2154, and on its timing and spectral properties measured by an extensive
observational campaign carried out between July 2014 and March 2015 with
Chandra and XMM-Newton (11 pointings). We discovered the spin period of SGR
J1935+2154 through the detection of coherent pulsations at a period of about
3.24s. The magnetar is slowing-down at a rate of 1.43(1)x10^{-11} s/s and with
a decreasing trend due to a negative second period derivative of
-3.5(7)x10^{-19} s/s^2. This implies a surface dipolar magnetic field strength
of about 2.2x10^{14} G, a characteristic age of about 3.6kyr and, a spin-down
luminosity L_{sd} of about 1.7x10^{34} erg/s. The source spectrum is well
modelled by a blackbody with temperature of about 500eV plus a power-law
component with photon index of about 2. The source showed a moderate long-term
variability, with a flux decay of about 25\% during the first four months since
its discovery, and a re-brightening of the same amount during the second four
months. The X-ray data were also used to study the source environment. In
particular, we discovered a diffuse emission extending on spatial scales from
about 1" up to at least 1' around SGR J1935+2154 both in Chandra and XMM-Newton
data. This component is constant in flux (at least within uncertainties) and
its spectrum is well modelled by a power-law spectrum steeper than that of the
pulsar. Though a scattering halo origin seems to be more probable we cannot
exclude that part, or all, of the diffuse emission is due to a pulsar wind
nebula.Comment: To appear in MNRAS; 10 pages, 3 color figures, 4 table
Nernst branes from special geometry
We construct new black brane solutions in  gauged 
supergravity with a general cubic prepotential, which have entropy density
 as  and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature 
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with  at the
horizon and  at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
  Section 3. No changes to conclusions. References adde
Long-term spectral and timing properties of the soft gamma-ray repeater SGR 1833-0832 and detection of extended X-ray emission around the radio pulsar PSR B1830-08
SGR 1833-0832 was discovered on 2010 March 19, thanks to the Swift detection of a short hard X-ray burst and follow-up X-ray observations. Since then, it was repeatedly observed with Swift, Rossi X-ray Timing Explorer and XMM-Newton. Using these data, which span about 225 d, we studied the long-term spectral and timing characteristics of SGR 1833-0832. We found evidence for diffuse emission surrounding SGR 1833-0832, which is most likely a halo produced by the scattering of the point-source X-ray radiation by dust along the line of sight, and we show that the source X-ray spectrum is well described by an absorbed blackbody, with temperature kT˜ 1.2 keV and absorbing column NH= (10.4 ± 0.2) × 1022 cm-2, while different or more complex models are disfavoured. The source persistent X-ray emission remained fairly constant at ˜3.7 × 10-12 erg cm-2 s-1 for the first ˜20 d after the onset of the bursting episode, then it faded by a factor of ˜40 in the subsequent ˜140 d, following a power-law trend with index α≃-0.5. We obtained a phase-coherent timing solution with the longest baseline (˜225 d) to date for this source which, besides period P= 7.565 4084(4) s and period derivative ? s s-1, includes higher order period derivatives. We also report on our search of the counterpart to the soft gamma-ray repeater (SGR) at radio frequencies using the Australia Telescope Compact Array and the Parkes Radio Telescope. No evidence for radio emission was found, down to flux densities of 0.9 mJy (at 1.5 GHz) and 0.09 mJy (at 1.4 GHz) for the continuum and pulsed emissions, respectively, consistently with other observations at different epochs. Finally, the analysis of the field of PSR B1830-08 (J1833-0827), which was serendipitously imaged by the XMM-Newton observations, led to the discovery of the X-ray pulsar wind nebula generated by this 85-ms radio pulsar. We discuss its possible association with the unidentified TeV source HESS J1834-087
Safety and efficacy of dronedarone from clinical trials to real-world evidence: implications for its use in atrial fibrillation.
Efficacy and safety of dronedarone was shown in the ATHENA trial for paroxysmal or persistent atrial fibrillation (AF) patients. Further trials revealed safety concerns in patients with heart failure and permanent AF. This review summarizes insights from recent real-world studies and meta-analyses, including reports on efficacy, with focus on liver safety, mortality risk in patients with paroxysmal/persistent AF, and interactions of dronedarone with direct oral anticoagulants. Reports of rapidly progressing liver failure in dronedarone-prescribed patients in 2011 led to regulatory cautions about potential liver toxicity. Recent real-world evidence suggests dronedarone liver safety profile is similar to other antiarrhythmics and liver toxicity could be equally common with many Class III antiarrhythmics. Dronedarone safety concerns (increased mortality in patients with permanent AF) were raised based on randomized controlled trials (RCT) (ANDROMEDA and PALLAS), but comedication with digoxin may have increased the mortality rates in PALLAS, considering the dronedarone-digoxin pharmacokinetic (PK) interaction. Real-world data on apixaban-dronedarone interactions and edoxaban RCT observations suggest no significant safety risks for these drug combinations. Median trough plasma concentrations of dabigatran 110 mg during concomitant use with dronedarone are at acceptable levels, while PK data on the rivaroxaban-dronedarone interaction are unavailable. In RCTs and real-world studies, dronedarone significantly reduces AF burden and cardiovascular hospitalizations, and demonstrates a low risk for proarrhythmia in patients with paroxysmal or persistent AF. The concerns on liver safety must be balanced against the significant reduction in hospitalizations in patients with non-permanent AF and low risk for proarrhythmias following dronedarone treatment
Holography of AdS vacuum bubbles
We consider the fate of AdS vacua connected by tunneling events. A precise
holographic dual of thin-walled Coleman--de Luccia bounces is proposed in terms
of Fubini instantons in an unstable CFT. This proposal is backed by several
qualitative and quantitative checks, including the precise calculation of the
instanton action appearing in evaluating the decay rate. Big crunches manifest
themselves as time dependent processes which reach the boundary of field space
in a finite time. The infinite energy difference involved is identified on the
boundary and highlights the ill-defined nature of the bulk setup. We propose a
qualitative scenario in which the crunch is resolved by stabilizing the CFT, so
that all attempts at crunching always end up shielded from the boundary by the
formation of black hole horizons. In all these well defined bulk processes the
configurations have the same asymptotics and are finite energy excitations.Comment: version submitted to journal. Note added referring to previous work
  on holographic instantons
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
  Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
  authorship. Significantly restructured and updated all sections; changes are
  too numerous to be usefully described here. The number of references
  increased from 186 to 32
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
  Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
  September 2010, Springer Verlag, in pres
X-ray emission from isolated neutron stars
X-ray emission is a common feature of all varieties of isolated neutron stars
(INS) and, thanks to the advent of sensitive instruments with good
spectroscopic, timing, and imaging capabilities, X-ray observations have become
an essential tool in the study of these objects. Non-thermal X-rays from young,
energetic radio pulsars have been detected since the beginning of X-ray
astronomy, and the long-sought thermal emission from cooling neutron star's
surfaces can now be studied in detail in many pulsars spanning different ages,
magnetic fields, and, possibly, surface compositions. In addition, other
different manifestations of INS have been discovered with X-ray observations.
These new classes of high-energy sources, comprising the nearby X-ray Dim
Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the
Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to
several tens of confirmed members, plus many candidates, and allow us to study
a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant
  Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from
  pulsars and their systems", held in April, 201
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
  "NewCompStar" European COST Action MP1304, 43 pages, 8 figure
The Imperfect Fluid behind Kinetic Gravity Braiding
We present a standard hydrodynamical description for non-canonical scalar
field theories with kinetic gravity braiding. In particular, this picture
applies to the simplest galileons and k-essence. The fluid variables not only
have a clear physical meaning but also drastically simplify the analysis of the
system. The fluid carries charges corresponding to shifts in field space. This
shift-charge current contains a spatial part responsible for diffusion of the
charges. Moreover, in the incompressible limit, the equation of motion becomes
the standard diffusion equation. The fluid is indeed imperfect because the
energy flows neither along the field gradient nor along the shift current. The
fluid has zero vorticity and is not dissipative: there is no entropy
production, the energy-momentum is exactly conserved, the temperature vanishes
and there is no shear viscosity. Still, in an expansion around a perfect fluid
one can identify terms which correct the pressure in the manner of bulk
viscosity. We close by formulating the non-trivial conditions for the
thermodynamic equilibrium of this imperfect fluid.Comment: 23 pages plus appendices. New version includes extended discussion on
  diffusion and dynamics in alternative frames, as well as additional
  references. v3 reflects version accepted for publication in JHEP: minor
  comments added regarding suitability to numerical approache
- …
