19 research outputs found

    Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats.</p> <p>Methods</p> <p>For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent).</p> <p>Results</p> <p>Microarray gene expression analysis showed that <it>Defcr4</it>, <it>Igfbp5</it>, <it>Mmp7, Nos2, S100A8 </it>and <it>S100A9 </it>were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while <it>Slc26a3</it>, <it>Mptx</it>, <it>Retlna </it>and <it>Muc2 </it>were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including <it>Apc</it>.</p> <p>Conclusion</p> <p>The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to note that one of the alterations concerned <it>Apc</it>, a key gene in colorectal carcinogenesis. The fact that many of the molecular alterations described in this study are documented in human colon tumours confirms the relevance of DMH-induced cancers as a powerful tool for the study of colon carcinogenesis and chemoprevention.</p

    One-year clinical outcome of patients with nonvalvular atrial fibrillation: Insights from KERALA-AF registry.

    Get PDF
    BackgroundWe report patient characteristics, treatment pattern and one-year clinical outcome of nonvalvular atrial fibrillation (NVAF) from Kerala, India. This cohort forms part of Kerala Atrial Fibrillation (KERALA-AF) registry which is an ongoing large prospective study.MethodsKERALA-AF registry collected data of adults with previously or newly diagnosed atrial fibrillation (AF) during April 2016 to April 2017. A total of 3421 patients were recruited from 53 hospitals across Kerala state. We analysed one-year follow-up outcome of 2507 patients with NVAF.ResultsMean age at recruitment was 67.2 years (range 18-98) and 54.8% were males. Main co-morbidities were hypertension (61.2%), hyperlipidaemia (46.2%) and diabetes mellitus (37.2%). Major co-existing diseases were chronic kidney disease (42.1%), coronary artery disease (41.6%), and chronic heart failure (26.4%). Mean CHA2DS2-VASc score was 3.18 (SD ± 1.7) and HAS-BLED score, 1.84 (SD ± 1.3). At baseline, use of oral anticoagulants (OAC) was 38.6% and antiplatelets 32.7%. On one-month follow-up use of OAC increased to 65.8% and antiplatelets to 48.3%. One-year all-cause mortality was 16.48 and hospitalization 20.65 per 100 person years. The main causes of death were cardiovascular (75.0%), stroke (13.1%) and others (11.9%). The major causes of hospitalizations were acute coronary syndrome (35.0%), followed by arrhythmia (29.5%) and heart failure (8.4%).ConclusionsDespite high risk profile of patients in this registry, use of OAC was suboptimal, whereas antiplatelets were used in nearly half of patients. A relatively high rate of annual mortality and hospitalization was observed in patients with NVAF in Kerala AF Registry

    Cell Cycle Gene Networks Are Associated with Melanoma Prognosis

    Get PDF
    BACKGROUND: Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. CONCLUSIONS/SIGNIFICANCE: This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic biomarkers and drug targets

    Grounding the State: Devolution and Development in India's Panchayats

    No full text
    Decentralisation is commonly defended on the grounds that it will bring government closer to people, thereby creating political structures that are more transparent and accountable to poor and marginal groups in society. However, a problem that is well recognised in the decentralisation literature is that the devolution of power will not necessarily improve the performance and accountability of local government. Indeed, in many cases, decentralisation simply empowers local elites to capture a larger share of public resources, often at the expense of the poor. Reflecting on these relatively long-standing problems, an important strand of scholarship has argued that central government can play a central role in counterbalancing the forces that tend to disfavour the poor. In this article, we aim to inform this scholarship by reflecting on the interface between local government and local people in two Indian States: Andhra Pradesh (AP) and Madhya Pradesh (MP). Drawing upon 12 months of primary research, we argue that although the government of AP did not devolve power to the extent that proponents of decentralisation would have liked, its populist approach to certain forms of poverty reduction empowered the poor in ways that the more ambitious decentralisation agenda in MP did not. This, we argue, was due in part to the fact that MP's decentralisation process failed to challenge the well-entrenched power of the village chiefs, the sarpanches. But the discrepancy can also be explained in terms of the historical evolution of 'development populism' in AP. In particular, we argue that the strong performance of programmes aimed at subsidising rice for low income households and providing credit to women's 'self-help groups' (SHGs) was part of the State government's wider political strategy of enhancing and maintaining electoral support among women, scheduled castes and the poor.

    Nrf2 Is Involved in Maintaining Hepatocyte Identity during Liver Regeneration

    No full text
    Nrf2, a central regulator of the cellular defense against oxidative stress and inflammation, participates in modulating hepatocyte proliferation during liver regeneration. It is not clear, however, whether Nrf2 regulates hepatocyte growth, an important cellular mechanism to regain the lost liver mass after partial hepatectomy (PH). To determine this, various analyses were performed in wild-type and Nrf2-null mice following PH. We found that, at 60 h post-PH, the vast majority of hepatocytes lacking Nrf2 reduced their sizes, activated hepatic progenitor markers (CD133, TWEAK receptor, and trefoil factor family 3), depleted HNF4α protein, and downregulated the expression of a group of genes critical for their functions. Thus, the identity of hepatocytes deficient in Nrf2 was transiently but massively impaired in response to liver mass loss. This event was associated with the coupling of protein depletion of hepatic HNF4α, a master regulator of hepatocyte differentiation, and concomitant inactivation of hepatic Akt1 and p70S6K, critical hepatocyte growth signaling molecules. We conclude that Nrf2 participates in maintaining newly regenerated hepatocytes in a fully differentiated state by ensuring proper regulation of HNF4α, Akt1, and p70S6K during liver regeneration

    CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice

    Get PDF
    <div><p>An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II). We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr<sup>-/-</sup>CD1d<sup>-/-</sup> mice) results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr<sup>-/-</sup> mice. In addition, we show that Ang II amplifies the activation of NKT cells both <i>in vivo</i> and <i>in vitro</i>. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.</p></div
    corecore