2,032 research outputs found

    RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation

    Get PDF
    Discrete manufacturing (DM) refers to produce products in non-sequential processes so as to respond to market and customer requirements quickly under limited lead-time. However, in shop-floor management, DM companies usually confront challenges such as information gaps between different manufacturing units, slow responsiveness to customer changes, and poor visualization. The main reasons are lacking of efficient manufacturing data collection manners and software to support shop-floor management. This paper introduces an RFID-enabled real-time manufacturing execution system (RT-MES) for improving DM shop-floor management level in the perspective of illustrating the RT-MES software design and implementation. Several contributions from this paper are significant. First, a framework of RFID-enabled RT-MES is proposed, which is generic and helpful for enterprise information system (EIS) construction. Second, a plug-universal database-aided design (PUDAD) concept and its realization are elaborated, which could reduce RT-MES development and implementation cycle. Third, an interface middleware is reported to enable RT-MES real-time intercommunication with other EISs such as SAP ERP. Fourth, a real-life case study describes how RT-MES to enhance a typical DM firm's shop-floor management, which can be referenced by other DM companies when they initiate and implement RFID-enabled solutions. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC 2011), Delft, the Netherlands, 11-13 April 2011. In Proceedings of ICNSC, 2011, p. 311-31

    On the geometric phase in the spatial equilibria of nonlinear rods

    Get PDF
    Geometric phases have natural manifestations in large deformations of geometrically exact rods. The primary concerns of this article are the physical implications and observable consequences of geometric phases arising from the deformed patterns exhibited by a rod subjected to end moments. This mechanical problem is classical and has a long tradition dating back to Kirchhoff. However the perspective from geometric phases seems to go more deeply into relations between local strain states and global geometry of shapes and infuses genuinely new insights and better understanding which enable one to describe this kind of deformation in a neat and elegant way. On the other hand visual representations of these deformations provide beautiful illustrations of geometric phases and render the meaning of the abstract concept of holonomy more direct and transparent.</p

    Implementing a behaviour-based framework for studying the influence of cooking and cleaning on indoor air quality

    Get PDF
    Indoor air quality (IAQ) is influenced by a cocktail of air pollutants emitted and formed in situ from a broad range of sources and human activity such as cooking and cleaning. Uncertainties remain in understanding the relationship between human behaviour and air pollutants emissions and dynamics, their emission source strengths and spatial variability in the residential buildings (Braniš et al., 2014; Nazaroff, 2016). A systematic approach to measuring the impact of indoor activities informed by human behaviour is extremely valuable and should allow the extrapolation of experimental findings

    Compensatory density feedback of Oncomelania hupensis populations in two different environmental settings in China

    Get PDF
    BACKGROUND: The most recent strategy for schistosomiasis control in the People's Republic of China aims to reduce the likelihood of environmental contamination of schistosome eggs. Despite considerable progress, it is believed that achievements would be further consolidated with additional intermediate host snail control measures. We provide an empirical framework for discerning the relative contribution of intrinsic effects (density feedback) from other extrinsic drivers of snail population dynamics. METHODS: We set up experiments in two study locations to collect reproduction data of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. We applied a set of four population dynamic models that have been widely used to study phenomenological time-series data to examine the properties of demographic density feedback patterns from abundance data. We also contrasted the obtained results with the component feedback of density on survival rate to determine whether adult survival was the principal driver of the demographic feedback observed. RESULTS: Demographic density feedback models (Ricker- and Gompertz-logistic) accounted for <99% of Akaike's information criterion model weight, with the Gompertz ranking highest in all O. hupensis population groups. We found some evidence for stronger compensatory feedback in the O. hupensis population from Sichuan compared to a Jiangsu population. Survival rates revealed strong component feedback, but the log-linear relationships (i.e. Gompertz) had less support in the demographic feedback analysis. CONCLUSIONS: Our findings indicate that integrated schistosomiasis control measures must continue to reduce parasite abundance further because intermediate host snail populations tend to grow exponentially at low densities, especially O. hupensis populations in mountainous regions. We conclude that density feedback in adult survival is the principal component contribution to the demographic phenomenon observed in the population fitness (r)-abundance relationship

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics

    Get PDF
    BACKGROUND: Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. The encoding frequency (k(e)) maps the measured phase to tissue displacement while the strength of the encoding gradients affects image quality. 2D cine DENSE studies have used a k(e) of 0.10 cycles/mm, which is high enough to remove an artifact-generating echo from k-space, provide high sensitivity to tissue displacements, and dephase the blood pool. However, through-plane dephasing can remove the unwanted echo and dephase the blood pool without relying on high k(e). Additionally, the high sensitivity comes with the costs of increased phase wrapping and intra-voxel dephasing. We hypothesized that k(e) below 0.10 cycles/mm can be used to improve image characteristics and provide accurate measures of cardiac mechanics. METHODS: Spiral cine DENSE images were obtained for 10 healthy subjects and 10 patients with a history of heart disease on a 3 T Siemens Trio. A mid-ventricular short-axis image was acquired with different k(e): 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm. Peak twist, circumferential strain, and radial strain were compared between acquisitions employing different k(e) using Bland-Altman analyses and coefficients of variation. The percentage of wrapped pixels in the phase images at end-systole was calculated for each k(e). The dephasing of the blood signal and signal to noise ratio (SNR) were also calculated and compared. RESULTS: Negligible differences were seen in strains and twist for all k(e) between 0.04 and 0.10 cycles/mm. These differences were of the same magnitude as inter-test differences. Specifically, the acquisitions with 0.04 cycles/mm accurately quantified cardiac mechanics and had zero phase wrapping. Compared to 0.10 cycles/mm, the acquisitions with 0.04 cycles/mm had 9 % greater SNR and negligible differences in blood pool dephasing. CONCLUSIONS: For 2D cine DENSE with through-plane dephasing, the encoding frequency can be lowered to 0.04 cycles/mm without compromising the quantification of twist or strain. The amount of wrapping can be reduced with this lower value to greatly simplify the input to unwrapping algorithms. The strain and twist results from studies using different encoding frequencies can be directly compared

    Knowledge, Attitudes and Practices (KAP) related to the Pandemic (H1N1) 2009 among Chinese General Population: a Telephone Survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>China is at greatest risk of the Pandemic (H1N1) 2009 due to its huge population and high residential density. The unclear comprehension and negative attitudes towards the emerging infectious disease among general population may lead to unnecessary worry and even panic. The objective of this study was to investigate the Chinese public response to H1N1 pandemic and provide baseline data to develop public education campaigns in response to future outbreaks.</p> <p>Methods</p> <p>A close-ended questionnaire developed by the Chinese Center for Disease Control and Prevention was applied to assess the knowledge, attitudes and practices (KAP) of pandemic (H1N1) 2009 among 10,669 responders recruited from seven urban and two rural areas of China sampled by using the probability proportional to size (PPS) method.</p> <p>Results</p> <p>30.0% respondents were not clear whether food spread H1N1 virusand. 65.7% reported that the pandemic had no impact on their life. The immunization rates of the seasonal flu and H1N1vaccine were 7.5% and 10.8%, respectively. Farmers and those with lower education level were less likely to know the main transmission route (cough or talk face to face). Female and those with college and above education had higher perception of risk and more compliance with preventive behaviors. Relationships between knowledge and risk perception (OR = 1.69; 95%CI 1.54-1.86), and knowledge and practices (OR = 1.57; 95%CI 1.42-1.73) were found among the study subjects. With regard to the behavior of taking up A/H1N1 vaccination, there are several related factors found in the current study population, including the perception of life disturbed (OR = 1.29; 95%CI 1.11-1.50), the safety of A/H1N1 vaccine (OR = 0.07; 95%CI 0.04-0.11), the knowledge of free vaccination policy (OR = 7.20; 95%CI 5.91-8.78), the state's priority vaccination strategy(OR = 1.33; 95%CI 1.08-1.64), and taking up seasonal influenza vaccine behavior (OR = 4.69; 95%CI 3.53-6.23).</p> <p>Conclusions</p> <p>This A/H1N1 epidemic has not caused public panic yet, but the knowledge of A/H1N1 in residents is not optimistic. Public education campaign may take the side effects of vaccine and the knowledge about the state's vaccination strategy into account.</p
    corecore