96 research outputs found

    Tourette disorder spectrum maps to chromosome 14q31.1 in an Italian kindred

    Get PDF
    Tourette syndrome (TS) is a frequent neuropsychiatric disorder of unknown etiology. A number of chromosomal regions have been nominated as TS loci in linkage studies, but confirmation has met with limited success and causative mutations have not yet been definitely identified. Furthermore, TS, chronic tics, and obsessive–compulsive disorder (OCD) occur at increased frequencies among TS relatives, supporting the view that these phenotypes represent parts of the same genetically determined spectrum. We ascertained a four-generation Italian kindred segregating TS, chronic multiple motor tics (CMT), and OCD, and we performed a ten-centimorgan (cM) genome-wide linkage scan in order to map the underlying genetic defect. Suggestive linkage to chromosome 14q31.1 (multipoint LOD = 2.4) was detected by affected-only analysis under an autosomal dominant model and a narrower phenotype definition (only the subjects with TS and CMT were considered as affected). The linkage peak increased and it approached genome-wide significance (LOD = 3.29) when a broader phenotype definition was adopted (subjects with TS, CMT, and OCD considered as affected). Haplotype analysis defined a ∼2.3 cM critical region, shared by all the relatives with TS, CMT, or OCD. In conclusion, we provide strong evidence for linkage of TS spectrum to chromosome 14q31.1. Suggestive linkage to an overlapping region of chromosome 14q was reported in a recent scan of TS sibling pairs. This region might therefore contain an important gene for TS, and it should be prioritized for further study

    Species-specific, pan-European diameter increment models based on data of 2.3 million trees

    Get PDF
    ResearchBackground: Over the last decades, many forest simulators have been developed for the forests of individual European countries. The underlying growth models are usually based on national datasets of varying size, obtained from National Forest Inventories or from long-term research plots. Many of these models include country- and location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to apply models outside the region or country they were developed for. However, there is a clear need for more generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires the development of models that are applicable across the European continent. The purpose of this study is to develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil and nutrient deposition. Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables was done using a combination of forward and backward selection methods. The explained variance ranged from 10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size of the tree) contributed most to the explained variance, but environmental variables were important to account for spatial patterns. The type of environmental variables included differed greatly among species. Conclusions: The presented diameter increment models are the first of their kind that are applicable at the European scale. This is an important step towards the development of a new generation of forest development simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and applicable to a wider range of management systems than before. This allows European scale but detailed analyses concerning topics like CO2 sequestration, wood mobilisation, long term impact of management, etcinfo:eu-repo/semantics/publishedVersio

    Structural Studies of the Tandem Tudor Domains of Fragile X Mental Retardation Related Proteins FXR1 and FXR2

    Get PDF
    Expansion of the CGG trinucleotide repeat in the 5′-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs are locally translated in response to stimuli.Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 Å, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9.The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor doamins reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner

    Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus

    Get PDF
    The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system

    LEARN 2 MOVE 2-3: a randomized controlled trial on the efficacy of child-focused intervention and context-focused intervention in preschool children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the efficacy and the working mechanisms of physical and occupational therapy interventions for children with cerebral palsy (CP). In recent years a shift from a child-focused intervention approach to a more context-focused intervention approach can be recognized. Until now the evidence on the efficacy and the working mechanisms of these interventions for children with CP is inconclusive. This study aims to evaluate the efficacy and working mechanisms of two intervention approaches compared to regular care intervention in improving mobility and self-care skills of children (2-3 years) with CP and their families: a child-focused intervention approach and a context-focused intervention approach.</p> <p>Methods/Design</p> <p>A multi-centre, randomized controlled trial research design will be used. Ninety-four children with CP (Gross Motor Function Classification System (GMFCS) level I-IV; age 2 to 3 years), their parents, and service providers (physical and occupational therapists) will be included. During a period of six months children will receive child-focused, context-focused or regular care intervention. Therapists will be randomly assigned to deliver either a child-focused intervention approach, a context-focused intervention approach or regular care intervention. Children follow their therapist into the allocated intervention arm. After the six months study-intervention period, all participants return to regular care intervention. Outcomes will be evaluated at baseline, after six months and at a three months follow-up period. Primary outcome is the capability of functional skills in self-care and mobility, using the Functional Skills Scale of the Pediatric Evaluation of Disability Inventory (PEDI). Other outcomes will be quality of life and the domains of the International Classification of Functioning, Disability and Health - for Children and Youth (ICF-CY), including body function and structure, activities (gross motor capacity and performance of daily activities), social participation, environmental variables (family functioning, parental empowerment).</p> <p>Discussion</p> <p>This paper presents the background information, design, description of interventions and protocol for this study on the efficacy and working mechanisms of child-focused intervention approach and context-focused intervention approach compared to regular care intervention in mobility and self-care skills of children (2-3 years) with CP.</p> <p>Trial registration</p> <p>This study is registered in the Dutch Trial Register as NTR1900</p

    Causes of Adverse Pregnancy Outcomes and the Role of Maternal Periodontal Status – A Review of the Literature

    Get PDF
    Preterm (PT) and Low birth weight (LBW) are considered to be the most relevant biological determinants of newborn infants survival, both in developed and in developing countries. Numerous risk factors for PT and LBW have been defined in the literature. Infections of the genitourinary tract infections along with various biological and genetic factors are considered to be the most common etiological factors for PT/LBW deliveries. However, evidence suggests that sub-clinical infection sites that are also distant from the genitor-urinary tract may be an important cause for PT/LBW deliveries. Maternal periodontal status has also been reported by many authors as a possible risk factor for PT and LBW, though not all of the actual data support such hypothesis. The aim of this paper is to review the evidence from various published literature on the association between the maternal periodontal status and adverse pregnancy outcomes. Although this review found a consistent association between periodontitis and PT/LBW, this finding should be treated with great caution until the sources of heterogeneity can be explained

    Fragile x syndrome and autism: from disease model to therapeutic targets

    Get PDF
    Autism is an umbrella diagnosis with several different etiologies. Fragile X syndrome (FXS), one of the first identified and leading causes of autism, has been modeled in mice using molecular genetic manipulation. These Fmr1 knockout mice have recently been used to identify a new putative therapeutic target, the metabotropic glutamate receptor 5 (mGluR5), for the treatment of FXS. Moreover, mGluR5 signaling cascades interact with a number of synaptic proteins, many of which have been implicated in autism, raising the possibility that therapeutic targets identified for FXS may have efficacy in treating multiple other causes of autism

    Targeted treatments for fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders (ASD), with up to 50% of males and some females with FXS meeting criteria for ASD. Autistic features are present in a very high percent of individuals with FXS, even those who do not meet full criteria for ASD. Recent major advances have been made in the understanding of the neurobiology and functions of FMRP, the FMR1 (fragile X mental retardation 1) gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to the dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to the dysregulated translational pathway. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model at multiple stages of development. Clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess cognitive change that might be associated with treatment. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. Therefore, targeted treatments developed for FXS may also target subgroups of ASD, and clinical trials in FXS may serve as a model for the development of clinical trial strategies for ASD and other cognitive disorders

    Atlantic salmon cardiac primary cultures:An in vitro model to study viral host pathogen interactions and pathogenesis

    Get PDF
    Development of Salmon Cardiac Primary Cultures (SCPCs) from Atlantic salmon pre-hatch embryos and their application as in vitro model for cardiotropic viral infection research are described. Producing SCPCs requires plating of trypsin dissociated embryos with subsequent targeted harvest from 24h up to 3 weeks, of relevant tissues after visual identification. SCPCs are then transferred individually to chambered wells for culture in isolation, with incubation at 15-22°. SCPCs production efficiency was not influenced by embryo's origin (0.75/ farmed or wild embryo), but mildly influenced by embryonic developmental stage (0.3 decline between 380 and 445 accumulated thermal units), and strongly influenced by time of harvest post-plating (0.6 decline if harvested after 72 hours). Beating rate was not significantly influenced by temperature (15-22°) or age (2-4 weeks), but was significantly lower on SCPCs originated from farmed embryos with a disease resistant genotype (F = 5.3, p<0.05). Two distinct morphologies suggestive of an ex vivo embryonic heart and a de novo formation were observed sub-grossly, histologically, ultra-structurally and with confocal microscopy. Both types contained cells consistent with cardiomyocytes, endothelium, and fibroblasts. Ageing of SCPCs in culture was observed with increased auto fluorescence in live imaging, and as myelin figures and cellular degeneration ultra-structurally. The SCPCs model was challenged with cardiotropic viruses and both the viral load and the mx gene expression were measurable along time by qPCR. In summary, SCPCs represent a step forward in salmon cardiac disease research as an in vitro model that partially incorporates the functional complexity of the fish heart
    corecore