817 research outputs found

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Low-Symmetry Rhombohedral GeTe Thermoelectrics

    Get PDF
    High-symmetry thermoelectric materials usually have the advantage of very high band degeneracy, while low-symmetry thermoelectrics have the advantage of very low lattice thermal conductivity. If the symmetry breaking of band degeneracy is small, both effects may be realized simultaneously. Here we demonstrate this principle in rhombohedral GeTe alloys, having a slightly reduced symmetry from its cubic structure, to realize a record figure of merit (zT āˆ¼ 2.4) at 600 K. This is enabled by the control of rhombohedral distortion in crystal structure for engineering the split low-symmetry bands to be converged and the resultant compositional complexity for simultaneously reducing the lattice thermal conductivity. Device ZT as high as 1.3 in the rhombohedral phase and 1.5 over the entire working temperature range of GeTe alloys make this material the most efficient thermoelectric to date. This work paves the way for exploring low-symmetry materials as efficient thermoelectrics. Thermoelectric materials enable a heat flow to be directly converted to a flow of charge carriers for generating electricity. The crystal structure symmetry is one of the most fundamental parameters determining the properties of a crystalline material including thermoelectrics. The common belief currently held is that high-symmetry materials are usually good for thermoelectrics, leading to great efforts having historically been focused on GeTe alloys in a high-symmetry cubic structure. Here we show a slight reduction of crystal structure symmetry of GeTe alloys from cubic to rhombohedral, enabling a rearrangement in electronic bands for more transporting channels of charge carriers and many imperfections for more blocking centers of heat-energy carriers (phonons). This leads to the discovery of rhombohedral GeTe alloys as the most efficient thermoelectric materials to date, opening new possibilities for low-symmetry thermoelectric materials. Cubic GeTe thermoelectrics have been historically focused on, while this work utilizes a slight symmetry-breaking strategy to converge the split valence bands, to reduce the lattice thermal conductivity and therefore realize a record thermoelectric performance, all enabled in GeTe in a rhombohedral structure. This not only promotes GeTe alloys as excellent materials for thermoelectric power generation below 800 K, but also expands low-symmetry materials as efficient thermoelectrics

    Energy Consumption Forecasting Using Ensemble Learning Algorithms

    Get PDF
    DCAI 2019: Distributed Computing and Artificial Intelligence, 16th International Conference, Special SessionsThe increase of renewable energy sources of intermittent nature has brought several new challenges for power and energy systems. In order to deal with the variability from the generation side, there is the need to balance it by managing consumption appropriately. Forecasting energy consumption becomes, therefore, more relevant than ever. This paper presents and compares three different ensemble learning methods, namely random forests, gradient boosted regression trees and Adaboost. Hour-ahead electricity load forecasts are presented for the building N of GECAD at ISEP campus. The performance of the forecasting models is assessed, and results show that the Adaboost model is superior to the other considered models for the one-hour ahead forecasts. The results of this study compared to previous works indicates that ensemble learning methods are a viable choice for short-term load forecast.This work has received funding from National Funds through FCT (FundaƧao da Ciencia e Tecnologia) under the project SPET ā€“ 29165, call SAICT 2017.info:eu-repo/semantics/publishedVersio

    Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.

    Get PDF
    PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation

    Immigrant community integration in world cities

    Full text link
    As a consequence of the accelerated globalization process, today major cities all over the world are characterized by an increasing multiculturalism. The integration of immigrant communities may be affected by social polarization and spatial segregation. How are these dynamics evolving over time? To what extent the different policies launched to tackle these problems are working? These are critical questions traditionally addressed by studies based on surveys and census data. Such sources are safe to avoid spurious biases, but the data collection becomes an intensive and rather expensive work. Here, we conduct a comprehensive study on immigrant integration in 53 world cities by introducing an innovative approach: an analysis of the spatio-temporal communication patterns of immigrant and local communities based on language detection in Twitter and on novel metrics of spatial integration. We quantify the "Power of Integration" of cities --their capacity to spatially integrate diverse cultures-- and characterize the relations between different cultures when acting as hosts or immigrants.Comment: 13 pages, 5 figures + Appendi

    Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

    Get PDF
    How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ā€˜electron repositoryā€™ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effectā€”electron spiral motion and magnon-drag thermopowerā€”as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles

    MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple Sequence Alignment (MSA) is a basic tool for bioinformatics research and analysis. It has been used essentially in almost all bioinformatics tasks such as protein structure modeling, gene and protein function prediction, DNA motif recognition, and phylogenetic analysis. Therefore, improving the accuracy of multiple sequence alignment is important for advancing many bioinformatics fields.</p> <p>Results</p> <p>We designed and developed a new method, MSACompro, to synergistically incorporate predicted secondary structure, relative solvent accessibility, and residue-residue contact information into the currently most accurate posterior probability-based MSA methods to improve the accuracy of multiple sequence alignments. The method is different from the multiple sequence alignment methods (e.g. 3D-Coffee) that use the tertiary structure information of some sequences since the structural information of our method is fully predicted from sequences. To the best of our knowledge, applying predicted relative solvent accessibility and contact map to multiple sequence alignment is novel. The rigorous benchmarking of our method to the standard benchmarks (i.e. BAliBASE, SABmark and OXBENCH) clearly demonstrated that incorporating predicted protein structural information improves the multiple sequence alignment accuracy over the leading multiple protein sequence alignment tools without using this information, such as MSAProbs, ProbCons, Probalign, T-coffee, MAFFT and MUSCLE. And the performance of the method is comparable to the state-of-the-art method PROMALS of using structural features and additional homologous sequences by slightly lower scores.</p> <p>Conclusion</p> <p>MSACompro is an efficient and reliable multiple protein sequence alignment tool that can effectively incorporate predicted protein structural information into multiple sequence alignment. The software is available at <url>http://sysbio.rnet.missouri.edu/multicom_toolbox/</url>.</p

    Silencing of IQGAP1 by shRNA inhibits the invasion of ovarian carcinoma HO-8910PM cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IQGAP1 is a scaffolding protein and overexpressed in many human tumors, including ovarian cancer. However, the contribution of IQGAP1 to invasive properties of ovarian cancer cells remains unknown. Here, we investigated the effect of IQGAP1-specific short hairpin RNA (shRNA) expressing plasmids on metastatic potential of ovarian cancer HO-8910PM cells.</p> <p>Methods</p> <p>We used RT-PCR and Western blot analysis to characterize expression of IQGAP1 in three human ovarian cancer-derived cell lines SK-OV-3, HO-8910 and HO-8910PM. We then determined whether expression of endogenous IQGAP1 correlated with invasive and migratory ability by using an in vitro Matrigel assay and cell migration assay. We further knocked down IQGAP1 using shRNA expressing plasmids controlled by U1 promoter in HO-8910PM cells and examined the proliferation activity, invasive and migration potential of IQGAP1 shRNA transfectants using MTT assay, in vitro Matrigel-coated invasion assay and migration assay.</p> <p>Results</p> <p>IQGAP1 expression level seemed to be closely associated with the enhanced invasion and migration in ovarian cancer cell lines. Levels of both IQGAP1 mRNA and protein were significantly reduced in HO-8910PM cells transfected with plasmid-based IQGAP1-specific shRNAs. RNAi-mediated knockdown of IQGAP1 expression in HO-8910PM cells resulted in a significant decrease in cell invasion and migration.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that IQGAP1 promotes tumor progression and identify IQGAP1 as a potential therapeutic strategy for ovarian cancer and some other tumors with over-expression of the IQGAP1 gene.</p

    CCAAT/Enhancer Binding Protein alpha uses distinct domains to prolong pituitary cells in the Growth 1 and DNA Synthesis phases of the cell cycle

    Get PDF
    BACKGROUND: A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPĪ±) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPĪ± regulates the transcription of a key metabolic regulator, growth hormone. RESULTS: We examined the consequences of C/EBPĪ± expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPĪ±. Ectopic expression of C/EBPĪ± in the progenitor cells resulted in prolongation of both growth 1 (G1) and the DNA synthesis (S) phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPĪ± were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPĪ± remained competent for G1 and S phase prolongation. C/EBPĪ± deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPĪ± in prolonging G1 and S. CONCLUSION: We found that C/EBPĪ± utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPĪ± remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPĪ± transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPĪ± to regulate gene expression independently of its effects on proliferation

    Estimation of cancer incidence and mortality attributable to alcohol drinking in china

    Get PDF
    Background. Cancer constitutes a serious burden of disease worldwide and has become the second leading cause of death in China. Alcohol consumption is causally associated with the increased risk of certain cancers. Due to the current lack of data and the imperative need to guide policymakers on issues of cancer prevention and control, we aim to estimate the role of alcohol on the cancer burden in China in 2005. Methods. We calculated the proportion of cancers attributable to alcohol use to estimate the burden of alcohol-related cancer. The population attributable fraction was calculated based on the assumption of no alcohol drinking. Data on alcohol drinking prevalence were from two large-scale national surveys of representative samples of the Chinese population. Data on relative risk were obtained from meta-analyses and large-scale studies. Results. We found that a total of 78,881 cancer deaths were attributable to alcohol drinking in China in 2005, representing 4.40% of all cancers (6.69% in men, 0.42% in women). The corresponding figure for cancer incidence was 93,596 cases (3.63% of all cancer cases). Liver cancer was the main alcohol-related cancer, contributing more than 60% of alcohol-related cancers. Conclusions. Particular attention needs to be paid to the harm of alcohol as well as its potential benefits when making public health recommendations on alcohol drinking. \ua9 2010 Liang et al; licensee BioMed Central Ltd
    • ā€¦
    corecore